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Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers

Victoria Lapuerta, Francisco J. Mancebo, and Jose´ M. Vega
ETSI Aerona´uticos, Universidad Polite´cnica de Madrid, Plaza Cardenal Cisneros, 3, 28040 Madrid, Spain

~Received 4 December 2000; published 28 June 2001!

We consider a horizontal heavy fluid layer supported by a light, immiscible one in a wide~as compared to
depth! container, which is vertically vibrated intending to counterbalance the Rayleigh-Taylor instability of the
flat, rigid-body vibrating state. In the simplest case when the density and viscosity of the lighter fluid are small
compared to their counterparts in the heavier fluid, we apply a long wave, weakly nonlinear analysis that yields
a generalized Cahn-Hilliard equation for the evolution of the fluid interface. This equation shows that the
stabilizing effect of vibration is like that of surface tension, and is used to analyze the linear stability of the flat
state, the local bifurcation at the instability threshold and some global existence and stability properties
concerning the steady states without dry spots. The analysis is extended to two cases of practical interest.
Namely,~a! the viscosity of one of the fluids is much smaller than that of the other one, and~b! the densities
and viscosities of both fluids are quite close to each other.

DOI: 10.1103/PhysRevE.64.016318 PACS number~s!: 47.20.Ma, 47.20.Ky
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I. INTRODUCTION AND FORMULATION

This paper deals with the Rayleigh-Taylor~RT! instability
@1,2# ~see also@3,4# and references therein!, which appears
when a light fluid is accelerated toward a denser one. T
this instability plays a role in accelerated fronts, which are
interest in, e.g., combustion@5#, plasma physics@6#, and as-
trophysics@7#. The analysis of RT instabilities in technolog
cal applications such as inertial confinement fusion@6# en-
counters considerable difficulties because this instab
often exhibits a transient nature and/or comes into play
nonstatic conditions, involving convection, heat flow, ma
ablation, and inhomogeneities, which affect the instabi
growth rate. In order to avoid these and deal with a cle
formulation, amenable to analytical treatment, we consi
the simplest configuration exhibiting this instability, name
that in which a horizontal heavy fluid layer is supported b
lighter fluid, the destabilizing acceleration being provided
gravity. In this configuration, the instability can be counte
balanced by an imposed vertical vibration of the contain
as already shown experimentally@8,9#; see also@9–11# for a
first theoretical explanation. The main object of this pape
to provide a weakly nonlinear theory of this stabilizing effe
in the limiting case when both the aspect ratio of the c
tainer and the vibrating frequency are appropriately lar
Let us mention here that to our knowledge no consiste
simplified evolution equations like the ones derived belo
accounting for both nonlinearity and viscous effects,
found in the literature for the evolution of the RT instabili
in the presence of vibration; and similar evolution equatio
in nonvibrating systems are of limited scope@4#.

Although we shall deal with a more general situation
Sec. IV, in order to illustrate both the analysis and the
sults, we first consider in Secs. II and III the limiting case
which the lighter fluid can be ignored, which is justifie
when its density and viscosity are small compared to th
counterparts,r andn, in the heavier fluid. Thus we conside
a wide cylindrical container of horizontal sizel and depth
h!l , which is vertically vibrated and placed in inverte
position~see Fig. 1!, with gravity acting downwards. We us
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the depthh and the viscous timeh2/n as characteristic length
and time for nondimensionalization and a Cartesian coo
nate system attached to the container, with thez50 plane on
the unperturbed free surface, assumed to be horizontal.
~nondimensional! governing equations are

“•u1]w/]z50, ~1.1!

]u/]t1~u•“ !u1w]u/]z52“p1Du1]2u/]z2,
~1.2!

]w/]t1u•“w1w]w/]z52]p/]z1Dw1]2w/]z2,
~1.3!

if ( x,y)PV and f (x,y,t),z,1, with boundary conditions

u50, w50 if z51 and if ~x,y!P]V, ~1.4!

w5] f /]t1u•“ f ,

]u/]z1“w5O~ u“uuu“ f u1~ u]u/]zu1u“wu!u“ f u2!

if z5 f , ~1.5!

p2av2f cos~vt !2BC22f 2C22
“•@“ f /~11u“ f u2!1/2#

52]w/]z1O~ u“uu1~ u]u/]zu1u“wu!u“ f u! if z5 f ,

~1.6!

“ f •n52D] f /]t or f 50 if ~x,y!P]V,

E
V

f ~x,y,t !dxdy50, ~1.7!

FIG. 1. Sketch of the side view of the container.
©2001 The American Physical Society18-1
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LAPUERTA, MANCEBO, AND VEGA PHYSICAL REVIEW E64 016318
where u and w are the horizontal and vertical velocity,p
5pressure1@av2cos(vt)1B/C2#z is a modified pressure an
f is the vertical free-surface deflection, assumed along
paper to be such that

u“ f u!u f u. ~1.8!

“, “•, and D are the horizontal gradient, divergence, a
Laplacian operators,V is the transversal cross section of t
container,]V is its boundary, andn is the ~horizontal! out-
ward unit normal to]V. The domainV is large and homo-
thetic to a fixed two-dimensional~2D! domain; the~dimen-
sionless! characteristic size ofV,

L5l /h@1, ~1.9!

is theaspect ratioof the container and

B5rgh2/s and C5nAr/~sh! ~1.10!

are theBond numberand thecapillary numberrespectively;
hereg is the gravitational acceleration ands is the surface
tension coefficient. In the first boundary condition~1.7! ei-
ther we allow a contact line motion or not. In the former ca
we assume that the static contact angle is 90° and employ
usual phenomenological law~see, e.g.,@12,13#! to account
for contact line dynamics; the phenomenological constanD
is positive and thus the motion of the contact line is dissi
tive. And when the contact line is fixed~at the upper edge o
the lateral wall! we assume that the height of the lateral w
is h and the liquid volume equalsh times the area ofV. Note
that the rigid-body oscillating, flat state

u50, w5p50, f 50 ~1.11!

is a ~steady! solution of Eqs.~1.1!–~1.7! in both cases. The
linear stability diagram of this solution is always like th
sketched in Fig. 2, where

aFv1/2→K* .0 and aRTv→K* .0 as v→`.
~1.12!

The upper and lower marginal instability curves correspo
to the Faraday instability and theRT instability, respec-

FIG. 2. A typical linear stability diagram of the static stea
state~1.11!. The regions where this flat state is stable~S! and un-
stable~U! are indicated.
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tively, which are considered in Sec. II A and Sec. II B. T
analysis in this paper applies in the stable region of Fig
outside a neighborhood of the upper instability bounda
thus the eigenmodes associated with the Faraday instab
are exponentially stable and can be ignored.

Figure 2 is qualitatively similar to the one obtained e
perimentally by Wolf@9# and illustrates that stabilization i
always feasible provided thatv is sufficiently large. Of
course, the forcing frequency is bounded in practice to
higher than ultrasound frequencies~say,&20 kHz); a second
limit results from the mechanical difficulties in imposing to
large an acceleration~note that the nondimensional acceler
tion av2 grows withv along the lower bound of the stabl
region in Fig. 2!.

Thus we shall be mainly concerned below with the lim
v→`. But for simplicity we shall begin in Sec. II A with the
linear stability analysis of the basic steady state~1.11! in the
viscous limit

BL2;C;D/L4;a;v;1, ~1.13!

which yields the most general results because in this limit
further approximation is made~in addition to linearization!.
That analysis will also be valid for largev and will help us
to identify thedistinguished limit

BL2;avC;a2v2D/L3;1, v@1, ~1.14!

which is the limit that provides the most general results
large forcing frequency. This limit will be considered in Se
III, where the leading nonlinear terms will also be taken in
account to obtain an evolution equation for the free surf
deflection. Finally, the more general case of a two-fluid la
will be considered in Sec. IV, where for simplicity the fin
form of the evolution equation accounting for weakly no
linear dynamics will be only derived in two limiting case
namely, that in which one of the fluids is inviscid compar
to the other one, and that in which the densities and visc
ties of both fluids are almost equal.

II. LINEAR STABILITY OF THE FLAT STATE

Let us linearize Eqs.~1.1!–~1.7! around the basic stat
~1.11! to obtain

“•u1]w/]z50, ]u/]t52“p1Du1]2u/]z2,
~2.1!

]w/]t52]p/]z1Dw1]2w/]z2,

if ( x,y)PV and 0,z,1, and

u50, w50 if z51 and if ~x,y!P]V, ~2.2!

w5] f /]t, ]u/]z1“w50 if z50, ~2.3!

p2av2f cos~vt !2BC22f 2C22D f 52]w/]z if z50,
~2.4!

“ f •n52D] f /]t or f 50 if ~x,y!P]V,
8-2
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E
V

f ~x,y,t !dxdy50. ~2.5!

As anticipated in Sec. I and illustrated in Fig. 2, margin
instability occurs at two possible type of modes, which e
hibit short and large wavelengths, of the order of the dep
and the width of the container, respectively.

A. Short-wave instability: Faraday waves

This instability, named after Faraday@14#, has been thor-
oughly studied@15–17#. In the limits ~1.13! and ~1.14! the
most unstable modes exhibit a wavelength that is at the m
of the order unity. Since the container cross section is la
end-wall effects are usually ignored, and the stability ana
sis of Eqs.~2.1!–~2.5! is made by only considering the no
mal modes, which are of the form

~u,w,p, f !5~U,W,P,F !exp@ i ~k1x1k2y!#1c.c.,
~2.6!

whereU, W, andP depend only onz and t, andF depends
only on t and c.c. denotes the complex conjugate. Subst
tion of these expressions into Eqs.~2.1!–~2.5! and elimina-
tion of U yield

Pzz5k2P, Wt52Pz1Wzz2k2W, ~2.7!

W5Wz50, at z521, ~2.8!

W2Ft5Wzz1k2W50, at z50, ~2.9!

P2av2F cos~vt !2~B2k2!F/C252Wz , at z50,
~2.10!

where k5Ak1
21k2

2 is the wave number of the mode. Th
calculation of the instability threshold forcing amplitudeaF
requires to determine those Floquet exponents of Eqs.~2.7!–
~2.10! whose real part vanishes; in fact,these exponents ar
numerically found to be either0 or ip, which correspond to
real Floquet multipliers 1 or21, respectively. For fixed val
ues of the remaining parameters, this determines a curvea-k
whose absolute minimum yieldsaF . The numerical calcula-
tion of the Floquet exponents is fairly cheap, even for e
treme values of the parameters, by using the method
scribed in Ref.@18#. The problem still depends onv, B, and
C, which makes its analysis fairly tedious. For the sake
brevity we only give results here for sufficiently large for
ing frequency, namely,

11~B/C2!2/3!v, ~2.11!

which is the more convenient one for the main object of t
paper. In this limit, gravity can be neglected and the marg
ally unstable modes exhibit a short wavelengthk21;v21/2

!1. As a consequence, Eqs.~2.7!–~2.10! can be further res-
caled to obtain a new problem that only depends on a
caled wave numberv21/2k and on the parametersaAv and
C4v. Using the latter two parameters, we numerically obt
the instability threshold curve plotted in Fig. 3, which pr
01631
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vides the upper instability limit in the sketch in Fig. 2. No
that this curve satisfies the first condition~1.12!, with

K* .1.67. ~2.12!

Let us point out here that the additional requireme
(B/C2)2/3!v in Eq. ~2.11! is seen to be automatically satis
fied in the stable region sketched in Fig. 2 when the up
boundary is as calculated here and the lower one is as g
by Eq.~2.40! below. Thus this additional condition is unne
essary when seeking stability in the limitv@1.

B. Long-wave instability: Rayleigh-Taylor

As is well known @3#, in the absence of vibration~if a
50) the linear problem~2.1!–~2.5! exhibits exponential in-
stability ~i.e., the RT instability! whenever

B̃[BL2.l0 , ~2.13!

wherel0 is the lowest eigenvalue of,

D̃F1lF5const in Ṽ, ]F/]ñ50 or F50 on ]Ṽ,

E
Ṽ

F dx̃dỹ50, ~2.14!

with

D̃5]2/] x̃21]2/] ỹ2, x̃5x/L, ỹ5y/L; ~2.15!

Ṽ is the result of rescalingV with L and]/]ñ is the result-
ing derivative along the outward unit normal. For the sim
plest cross sections, namely, the circle of diameter 1,Ṽ1 and
the rectangle of sidesd>1 and 1,Ṽ2, the lowest eigenvalue
l0, and an associated eigenfunctionF0 are given by

l054g1
2 , F05J1~2g1r !cos~u2u0! in Ṽ1,

~2.16!
and l05p2/d2, F05cos~p x̃/d! in Ṽ2

if the first boundary condition in Eq.~2.14! applies, where
g1.2.40 is the first positive root of the derivativeJ18 of the

FIG. 3. A plot of the rescaled Faraday instability threshold a
plitude aFv1/2[(2pv* /n)1/2aF* in terms ofC4v[2pv* r2n3/s2

in the limit ~2.11!; the asymptotes asC4v→0 and C4v→` are
plotted with dotted lines.
8-3
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LAPUERTA, MANCEBO, AND VEGA PHYSICAL REVIEW E64 016318
first Bessel functionJ1 , r andu are polar coordinates, andu0

is an arbitrary constant resulting from invariance under ro
tion; and

l054g2
2 , F05J1~2g2r !cos~u2u0! in Ṽ1 ,

~2.17!
l05p214p2/d2, F05sin~2p x̃/d!sin~p ỹ! in Ṽ2 ,

if the second boundary condition in Eq.~2.14! applies, where
g2.3.83 is the first positive root ofJ1. Note that all these
eigenfunctions are antisymmetric on a straight line (x̃5d/2
in Ṽ1 or u5u06p/2 in Ṽ2). There are also symmetri
eigenfunctions, but they are associated with larger eigen
ues.

Thus the instability sets in forO(L22) values of the Bond
numberB. Viscosity does not affect the instability thresho
and the only stabilizing effect results from the surface t
sion. In fact, the stabilizing effect of vibration in this limit i
to ‘‘create a surface-tension-like’’ mechanism as we sh
now. To this end, we consider the viscous limit~1.13! and
use a two-time-scales method as follows. In the distinguis
limit ~1.13! we rescale the Bond number and the horizon
space variables as in Eqs.~2.13! and ~2.15!, introduce the
slow time variable

t̃ 5t/L4 ~2.18!

and seek solutions of Eqs.~2.1!–~2.5! of the form

u5L21uo~ x̃,ỹ,z, t̃ !eivt1L23h.o.h.1c.c.

1L23us~ x̃,ỹ,z, t̃ !1•••,

w5L22wo~ x̃,ỹ,z, t̃ !eivt1L24h.o.h.1c.c.

1L24ws~ x̃,ỹ,z, t̃ !1•••, ~2.19!

p5po~ x̃,ỹ,z, t̃ !eivt1L22h.o.h.1c.c.

1L22ps~ x̃,ỹ,z, t̃ !1•••,

f 5L22f o~ x̃,ỹ, t̃ !eivt1L24h.o.h.1c.c.1 f s~ x̃,ỹ, t̃ !1•••,

where c.c. denotes the complex conjugate and h.o.h. st
for higher order harmonics, depending on the fast time var
able t as eimvt, with mÞ0,61. The scalings~2.19! are ob-
tained by an orders-of-magnitude analysis in Eqs.~2.1!–
~2.5!, anticipating that in the absence of vibration t
dispersion relation of the long-wave modes of Eqs.~2.7!–
~2.10! associated with the RT instability ism ([ growth
rate! 5(B2k2)k2/(3C2)1O(k6) ask→0. Substituting Eq.
~2.15! and Eqs.~2.18! and ~2.19! into Eqs.~2.1!–~2.4! and
the last equation in Eq.~2.5! yields

“̃•uo1]wo /]z50, ivuo52“̃po1]2uo /]z2,

]po /]z50, ~2.20!
01631
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“̃•us1]ws /]z50, “̃ps5]2us /]z2, ]ps /]z50,
~2.21!

if ( x,y)PV and 0,z,1, and

uo5us50, wo5ws50 if z51, ~2.22!

wo5 iv f o , ws5] f s /] t̃ , ]uo /]z5]us /]z50 if z50,
~2.23!

po5av2f s/2,

ps5av2~ f o1 f̄ o!/21B̃C22f s1C22D̃ f s if z50,
~2.24!

E
Ṽ

f sdx̃dỹ50, ~2.25!

where Ṽ, “̃, and D̃ are as defined above and the overb
denotes the complex conjugate. Equations~2.20!–~2.24! do
not apply in a boundary layer ofO(1) thickness near the
lateral walls. The analysis of this boundary layer~see Appen-
dix A! provides the following boundary conditions for th
solution in the bulk:

] f s /]ñ52D̃] f s /] t̃ or f s50, E
0

1

us•ñ dz50 on ]Ṽ,

~2.26!

whereñ is the unit outward normal to]Ṽ as above,

D̃52D/@$21a2v2C2f~v!%L3#, ~2.27!

and the functionf is defined as

f~v!512Re„~Aiv!21 tanhAiv… ~2.28!

with Re standing for the real part. Note that

f~v!.0 for all v.0, and f~v!→1 as v→`.
~2.29!

Integration of Eqs.~2.20!–~2.24! yields

po5av2f s/2,

uo5 i ~av/2!@12~coshAiv!21 coshAivz#“̃ f s ,
~2.30!

wo5 i ~av/2!@12z2~Aiv coshAiv!21

3~sinhAiv2sinhAivz!#D̃ f s , ~2.31!

f o5~a/2!@12~Aiv!21 tanhAiv#D̃ f s, ~2.32!

us5~z221!“̃ps/2, ws52~223z1z3!D̃ps/6,

] f s /] t̃ 52D̃ps/3, ~2.33!

ps5B̃C22f s1@C221a2v2f~v!/2#D̃ f s , ~2.34!
8-4
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CONTROL OF RAYLEIGH-TAYLOR INSTABILITY BY . . . PHYSICAL REVIEW E 64 016318
where the functionf is as defined in Eq.~2.28!. And a
further substitution of Eq.~2.34! into the last equation in Eq
~2.33! leads to

3] f s /] t̃ 1B̃C22D̃ f s1@C221a2v2f~v!/2#D̃2f s

50 in Ṽ, ~2.35!

whereD̃2 stands for the biharmonic operator. In addition, w
must use the volume conservation condition~2.25! and the
boundary conditions~2.26! that, using the first expressio
~2.33!, are

] f s /]ñ52D̃] f s /] t̃ or f s50,

B̃C22] f s /]ñ1@C221a2v2f~v!/2#]D̃ f s /]ñ50 ~2.36!

on ]Ṽ, E
Ṽ

f s dx̃dỹ50.

Note that, as anticipated above, the effect of vibrat
@measured by the terma2v2f(v)] is equivalent to enhanc
ing the effective surface tension of the free surface, meas
by C22 in nondimensional terms. According to the analy
in Appendix B, this solution is asymptotically stable, if an
only if

BL2[B̃,B̃c[l0@11C2a2v2f~v!/2#, ~2.37!

wherel0 is the lowest eigenvalue of Eq.~2.14!. Thus, the
instability threshold amplitudeaRT is given by

@l0C2/~BL2!#aRT
2 v252@12l0 /~BL2!#/f~v!

~2.38!

and yields the threshold acceleration plotted vsv in Fig. 4
for several values of the parameterl0 /(BL2), which must be
such that 0<l0 /(BL2),1, in order that the system is un
stable in the absence of vibration~otherwise, the RT insta
bility does not appear!. Note that, according to the nond

FIG. 4. A plot of the rescaled RT instability threshold accele
tion, A5@Al0C/(ABL)#aRTv

2[@l0
1/2h5/2/(l g1/2n)#aRT* (2pv* )2,

in terms of the nondimensional forcing frequency,v[2pv* h2/n,
for the indicated values of the parametera5l0 /(BL2)
[l0s/(rgl 2), as given by Eq.~2.38!.
01631
n
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mensionalization in Sec. I,l0 /(BL2)5l0s/(rgl 2). If the
surface tension is not much larger and the density is
much smaller than those of the water, this parameter is sm
whenever the horizontal size of the container is large co
pared to the capillary length (As/(rg);3 mm).

Some remarks about this result are now in order:
~1! The stabilizing effect of vibration is like that of sur

face tension, which can be completely substituted by vib
tion. In the absence of surface tensionC2;B→` and the
instability threshold is given by the highest curve in Fig.
The origin of this stabilizing effect is clear from the solutio
~2.30!–~2.34! of Eqs. ~2.20!–~2.24!. If a ~nonconstant! free
surface deflectionf s is present then the system cannot v
brate as a rigid body and an oscillating flow appears wh
associated free surface deflection is proportional toaD̃ f s
@see Eq.~2.32!# and in turn produces@through nonlinear in-
teraction with the primary oscillating pressure field
2av2z cos(vt), accounted for in the second term in the le
hand side of Eq.~2.4!# a nonoscillating overpressure propo
tional to a2v2D̃ f s ; this is the stabilizing term.

~2! The new instability thresholdB̃c given in Eq.~2.37! is
higher than that in the absence of vibration, which isl0. For
fixed values of the remaining parameters, the plotaRTv

2 vs.
v in Fig. 4 is as sketched in the lower curve in Fig. 2 a
satisfies Eq.~1.12!, with K* 5A2(BL22l0)/(l0C2).

~3! If a andv are bounded then, according to Eq.~2.37!
stabilization is only possible ifBL2 is bounded, which mean
@see Eq.~1.9!# that B must be quite small, and this require
that the depth be extremely small on earth conditions. C
dition ~2.37! is written in dimensional terms~see Sec. I! as

l 2,l0@s/~rg!1~2pa* v* !2hf~2pv* h2/n!/~2g!#,
~2.39!

wherea* andv* are the dimensional forcing amplitude an
frequency. Thus the instability limit depends on viscosity (n)
through the argument of the functionf. This is not surpris-
ing because the stabilization due to vibration is due to os
lations in the bulk that are viscous ifv52pv* h2/n is
bounded. In particular, asn increases the viscous timeh2/n
decreases, and the forcing frequencyv* must also increase
to maintain the stabilizing effect of vibration. The situation
much better asav→`, which is easily achieved in the rea
istic limit v→`, when@f(v)→1, see Eq.~2.29!, and# con-
ditions ~2.37! and ~2.39! become

BL2,l0@11C2a2v2f~v!/2#

and

l 2,l0@s/~rg!1~2pa* v* !2h/2g#. ~2.40!

This condition is independent of viscosity@which in this
limit v@1 only comes into play through the Faraday ins
bility, see remark~4! below#. The reason is that now th
oscillatory flow that produces the stabilizing effect is invi
cid except in boundary layers, which only produce a high
order effect. If, for illustration, we consider a circular co
tainer of diameterl 55 cm and depthh55 mm ~thus the

-

8-5
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LAPUERTA, MANCEBO, AND VEGA PHYSICAL REVIEW E64 016318
aspect ratiol /h510 is large! and assume that the conta
line is fixed, thenl054g2

2.58.7 @see Eq.~2.17!# and the
condition ~2.40! is satisfied provided that

s/r!418 cm3/s2 and 2pa* v* .40.9 cm/s.
~2.41!

~4! In addition, we must avoid the Faraday instability b
requiring thataAv is below the curve in Fig. 3; the validity
conditions~2.11! are seen to be satisfied for both mineral
and water. For a sufficiently large forcing frequency, Farad
waves are avoided, provided thataAv,K* , which is writ-
ten in dimensional terms as 2pv* (a* )2<K* 2n, and this is
compatible with Eq.~2.41! only if 2pv* n>600 cm2/s2.
This condition is satisfied for mineral oil (n;1 cm2/s) if,
say,v* 5102 Hz anda* .0.6 mm, and for clean water (n
50.01 cm2/s), if v* 5104 Hz anda* 56mm. Of course the
situation is much better both in microgravity conditions a
when the liquid layer is supported by another layer of liqu
of nonzero density. The latter case will be considered in S
IV.

~5! The analysis above has the obvious limitations of a
linear theory. Nonlinear stability will be analyzed below.

III. WEAKLY NONLINEAR THEORY FOR LARGE
VIBRATING FREQUENCY

According to remark~3! at the end of Sec. II we assum
that

v@1 and av@1. ~3.1!

A. Asymptotic derivation of an evolution equation for
the free surface

According to Eqs.~2.29!–~2.34!, in order that all the
terms in Eq.~2.35! be of the same order in the limit~3.1!, the
following rescaled parameters and slow time variable

B̂5BL2, Ĉ5avC;1,

D̂52a2v2D/@~21a2v2C2!L3#;1, t̂5a2v2t/L4,
~3.2!

must be of order unity. Thus we replace the expansi
~2.19! by

u5avL21uo~ x̃,ỹ,z, t̂ !eivt1a2vL23h.o.h.1c.c.

1a2v2L23us~ x̃,ỹ,z, t̂ !1•••,

w5avL22wo~ x̃,ỹ,z, t̂ !eivt1a2vL24h.o.h.1c.c.

1a2v2L24ws~ x̃,ỹ,z, t̂ !1•••,

p5av2po~ x̃,ỹ,z, t̂ !eivt1a2v2L22h.o.h.1c.c.

1a2v2L22ps~ x̃,ỹ,z, t̂ !1•••,

f 5aL22f o~ x̃,ỹ, t̂ !eivt1a2L24h.o.h.1c.c.1 f s~ x̃,ỹ, t̂ !1•••,
01631
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which are now substituted into the original nonlinear pro
lem ~1.1!–~1.6!, to obtain

“̃•uo1]wo /]z50, iuo52“̃po , ]po /]z50, ~3.3!

“̃•us1]ws /]z50,

2“̃ps1]2us /]z25~ ūo•“̃ !uo1w̄o]uo /]z1c.c.,

]ps /]z50, ~3.4!

if ( x,y)PV and f s,z,1, and

us50, wo5ws50 if z51, ~3.5!

wo5 i f o1uo•“̃ f s , ws5] f s /] t̂1us•“̃ f s ,

]us /]z50 if z5 f s , ~3.6!

po5 f s/2, ps5~ f o1 f̄ o!/21B̂Ĉ22f s1Ĉ22D̃ f s if z5 f s ,
~3.7!

E
Ṽ

f s dx̃dỹ50. ~3.8!

Note that viscous terms have been ignored~because they are
small compared to inertia! in the second equation~3.3!. This
approximation fails in two thin viscous boundary layers, w
O(v21/2) thicknesses, attached to the free surface and
upper plate; but the effect of these@which could in principle
change the boundary conditions~3.5!–~3.7!# is seen to be of
higher order and thus can be ignored in first approximat
in both the oscillatory and the nonoscillatory parts of t
solution. Inertia is much smaller in the second equation~3.4!,
where viscous terms cannot be neglected because they a
the same order as the convective terms. And, as in Sec
the effect of the lateral walls is appreciated only in a late
boundary layer, with aO(1) thickness, near the lateral wal
where Eqs.~3.3!–~3.7! do not apply. This boundary laye
~see Appendix A! provides the following boundary condi
tions for the solution in the bulk

] f s /]ñ52D̂] f s /] t̂ or f s50, E
0

1

us•ñ dz50 on ]Ṽ.

~3.9!

On the other hand, we consider the following overall co
tinuity equations, which are obtained upon integration of
first expressions in Eqs.~3.3! and~3.4! in f s,z,1 and sub-
stitution of the first two boundary conditions~3.6!,

“̃•S E
f s

1

uo dzD 5 i f o, “̃•S E
f s

1

us dzD 5] f s /] t̂ .

Using these, we may integrate the remaining equations
boundary conditions in Eqs.~3.3!–~3.7! to obtain

po5 f s/2, uo5 i “̃ f s/2, f o5~12 f s!D̃ f s/22u“̃ f su2/2,
8-6
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us5~z222 f sz2112 f s!@4“̃ps1“̃~ u“̃ f su2!#/8,
~3.10!

] f s /] t̂52“̃•@~12 f s!
3
“̃@4ps1u“̃ f su2!#/12, ~3.11!

ps5B̂Ĉ22f s1@Ĉ221~12 f s!/2#D̃ f s2u“̃ f su2/2 in Ṽ,
~3.12!

where we have taken into account that (“̃ f s•“̃)“̃ f s

5“̃(u“̃ f su2)/2.
The evolution equation we were looking for is given b

Eqs.~3.11! and ~3.12!. Also, invoking Eqs.~3.8!, ~3.9!, and
~3.10!, we have

] f s /]ñ52D̂] f s /] t̂ or f s50,

4]ps /]ñ1]~ u“̃ f su2!/]ñ50 on ]Ṽ, E
Ṽ

f sdx̃dỹ50.

~3.13!

And for convenience we rescale the time variable and d
out the subscripts to rewrite Eqs.~3.11!–~3.13! as

] f /]t52“̃•@~12 f !3
“̃U#, with

U5l f 1~12g f !D̃ f 2gu“̃ f u2/2, in Ṽ, ~3.14!

] f /]ñ52b] f /]t or f 50, ]U/]ñ50 on ]Ṽ,

E
Ṽ

f dx̃dỹ50, ~3.15!

where@see also Eqs.~1.13! and ~3.2!#

g52B̂/~21Ĉ2![2BL2/~21a2v2C2!,

g5Ĉ2/~21Ĉ2![a2v2C2/~21a2v2C2!,1,

b5~21Ĉ2!D̂/~6Ĉ2![D/~3C2L3!,

t5~21Ĉ2! t̂ /~6Ĉ2![~21a2v2C2!t/~6C2L4!.
~3.16!

Equation ~3.14! is somewhat similar to the Cahn-Hilliar
equation. Since 0,g,1, the problem~3.14! is uniformly
parabolic and thus has a unique solution satisfying gi
initial conditions@19–21# whenever

u f u5bounded andf ,1. ~3.17!

Note that the first boundary condition is somewhat nonsta
ard, but it is dissipative becauseb>0 and thus standard
results for Dirichlet and Neumann boundary conditions
somewhat straightforwardly extended when this condit
applies. In addition to the solutions satisfying Eq.~3.17! for
all t.0, we could allowf 51 in a time-dependent close
subsetK(t),Ṽ, which physically corresponds to adry spot
on the upper plate. The associated problem, not consid
01631
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here, would be a free boundary problem and should be c
pleted with appropriate jump conditions at the boundary
K.

B. Linear stability of the flat state

The linear stability of the simplest steady state of E
~3.14! and ~3.15!, f 50, is analyzed as usually, by first lin
earizing around f 50 and then replacingf ( x̃,ỹ,t) by
F( x̃,ỹ)emt in the resulting problem, to obtain the linear e
genvalue problem

2D̃U5mF, D̃F1lF5U in Ṽ, ~3.18!

]F/]ñ52mbF or F50, ]U/]ñ50 on ]Ṽ,

E
Ṽ

F dx̃dỹ50, ~3.19!

which is analyzed in Appendix B. According to Property B
the instability threshold isl5l0 and invoking the first ex-
pression in Eq.~3.16!, the main result in Sec. II@namely, Eq.
~2.40!# is recovered.

C. Nonflat steady states without dry spots

The steady states of Eqs.~3.14! and ~3.15! that do not
exhibit dry spots are given by

~12g f !D̃ f 1l f 2gu“̃ f u2/25const, f ,1 in Ṽ,
~3.20!

] f /]ñ50 or f 50 on ]Ṽ, E
Ṽ

f dx̃dỹ50. ~3.21!

As seen in Sec. III B above, the flat steady statef 50 is
stable ifl,l0. Since Eqs.~3.20! and~3.21! are a particular
case of Eqs.~C1! and ~C2!, with

H~ f !5g f , ~3.22!

we may apply the analysis in Appendix C to obtain the f
lowing property concerning the local bifurcation of Eq
~3.20! and ~3.21! at l50.

Property 3.1. For generic domainsṼ, such that the
eigenfunctions of Eq. (2.14) associated withl5l0, are such
that

E
Ṽ

F0
3dx̃dỹÞ0, ~3.23!

the bifurcation is transcritical. And ifṼ is either a circle or
a rectangle, then the bifurcation is subcritical.

Proof. SinceH8(0)5g.0, if Eq. ~3.23! holds, then the
constantG2 in Eq. ~C12! is nonzero and according to th
discussion in Appendix C, the bifurcation is transcritic
And sinceH9(0)50, Property C1 implies that for circle
and rectangles the bifurcation is subcritical.

The followingglobal result gives sufficient conditions fo
nonexistence of nonflat steady states without dry sp
8-7
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Property 3.2. Let l0.0 be the lowest positive eigenvalue
Eq. ~2.14!. If g,2/3 and l,l0(123g/2) then Eqs. (3.20)
and (3.21) only possesses the flat solution f50.

Proof. In order to prove this property, we first note th
the solutions of Eqs.~3.20! and ~3.21! satisfy

E
Ṽ

@~123g f /2!u“̃ f u22l f 2#dx̃dỹ50, ~3.24!

as readily obtained upon multiplication of Eq.~3.20! by f,
integration inṼ, integration by parts and substitution of E
~3.21!. And we only need to use the variational definitio
~B10! of l0 to obtain the stated result.

D. Lyapunov function and large-time behavior

The problem~3.14! and ~3.15! admits a Lyapunov func-
tion that is readily obtained upon multiplication of the fir
equation~3.14! by U, integration inṼ, substitution of the
second equation~3.14! and of Eq.~3.15!, and integration by
parts, to obtain

dE/dt52E
Ṽ

~12 f !3u“̃Uu2dx̃dỹ

2bE
]Ṽ

~12g f !~] f /]t!2ds

or dE/dt52E
Ṽ

~12 f !3u“̃Uu2 dx̃dỹ, ~3.25!

depending on whether the first or the second boundary c
dition ~3.15! applies, where the rescaled energyE is given by

E5E
Ṽ

@~12g f !u“̃ f u22l f 2#dx̃dỹ/2.

Equation ~3.25! and a well-known result on infinite
dimensional dynamical systems~Ref. @22#, p. 50, Lemma
3.8.2! ~whose assumptions are checked in this case by
bedding theorems@23# and a priori estimates for elliptic
@24,25# and parabolic@19# equations! yields the following.

Property 3.3. If a solution of Eqs. (3.14) and (3.15) sa
isfies Eq. (3.17), uniformly for allt.0, then f converges to a
the set of steady states without dry spots ast→`.

As a consequence of this property, each solution of E
~3.14! and ~3.15! is such that either~i! becomes unbounde
or develops a dry spot~for finite or infinite time! or ~ii !
converges to the set of steady states without dry spots,
sidered above in Secs. III B and III C.

IV. TWO IMMISCIBLE LAYERS

We consider now a closed container of height 2h and
width l such thath!l , which is filled with two immiscible
liquids of different densities, with the lighter liquid below
the heavier one. We use a vibrating Cartesian coordin
system with thez50 plane on the unperturbed interfac
assumed to be horizontal, and employ the viscous t
h2(r11r2)/(r1n11r2n2) and the lengthh for nondi-
01631
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mensionalization, wherer andn denote the density and ki
nematic viscosity and the superscripts1 and 2 are used
hereinafter for the variables pertaining to the liquid abo
and below the interface. The governing equations are no

“•u61]w6/]z50, ~4.1!

~16m!@]u6/]t1~u6
•“ !u61w6]u6/]z#

522“p61~16n!~Du61]2u6/]z2!, ~4.2!

~16m!@]w6/]t1u6
•“w61w6]w6/]z#

522]p6/]z1~16n!~Dw61]2w6/]z2!, ~4.3!

if ( x,y)PV and 6 f (x,y,t),6z,16d, with boundary
conditions

u650, w650 if z56~16d! and if ~x,y!P]V,
~4.4!

u25u1, w22u2
•“ f 5w12u1

•“ f 5] f /]t if z5 f ,
~4.5!

~11n!~]u1/]z1“w1!2~12n!~]u2/]z1“w2!

5O~ u“u6uu“ f u1~ u]u6/]zu1u“w6u!u“ f u2! if z5 f ,

~4.6!

p12p22av2f cos~vt !2BC22f

2C22
“•@“ f /~11u“ f u2!1/2#

52~11n!]w1/]z22~12n!]w2/]z

1O~ u“u6u1~ u]u6/]zu1u“w6u!u“ f u! if z5 f ,

~4.7!

“ f •n52D] f /]t or f 50 if ~x,y!P]V,

E
V

f ~x,y,t !dxdy50, ~4.8!

whereu, w, p, f, “, “•, D, V, ]V, andn are as defined in
Sec. I, withf andL ~the dimensionless characteristic size
V) satisfying again Eqs.~1.8! and~1.9!. The positive param-
etersd, m ~Atwoodnumber! and n, the effective nondimen-
sional vibration amplitude, a, and the Bond and capillary
numbers are now

d5~h12h2!/~h11h2!, m5~r12r2!/~r11r2!,

n5~r1n12r2n2!/~r1n11r2n2!,

a5~a* /h!~r12r2!/~r11r2!, ~4.9!

B5~r12r2!gh2/s.0,

and

C5~r1n11r2n2!@~r11r2!sh#21/2,
8-8
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wherea* is the dimensional vibrating amplitude,h6 are the
unperturbed depths of the liquid layers~such thath11h2

52h), r6 are the densities,g is the gravitational accelera
tion, n6 are the kinematic viscosities, ands is the surface
tension coefficient.

In the absence of vibration~if a50) the quiescent state i
linearly unstable due to RT instability, if and only if, Eq
~2.13! holds. With vibration, the linear stability analysis
completely similar to that in Sec. II and yields the asympto
stability condition

B̂,B̂c5l0@11~12d2!a2v2C2/$2~12md!%#,
~4.10!

whereB̂5BL2 is as defined in Eq.~2.13!, l0 is the lowest
eigenvalue of Eq.~2.14! and, as in Sec. II, we assume tha

v@1. ~4.11!

With the same notation as in Sec. II B, remark~3!, condition
~4.10! can be written in dimensional form as

l 2,l0F s

~r12r2!g
1

~2pa* v* !2

2g

3
h1h2~r11r2!2

~h2r11h1r2!~r12r2!
G .

Note that as in the case of only one liquid layer and for
same reason@remark~3!, at the end of Sec. II B# this condi-
tion is independent of viscosity.

In the limit ~4.11!, the analysis of the weakly nonlinea
dynamics of the system proceeds as in Sec. III. We ag
assume that Eq.~3.1! holds, rescaleC, D, and the slow time
variable as

Ĉ5avC, D̂52a2v2D/@~21a2v2C2!L3#, t̂5a2v2t/L4,
~4.12!

whereĈ and D̂ are again assumed of order unity, and se
the expansions

u65avL21uo
6~ x̃,ỹ,z, t̂ !eivt1a2vL23h.o.h.1c.c.

1a2v2L23us
6~ x̃,ỹ,z, t̂ !1•••,

w65avL22wo
6~ x̃,ỹ,z, t̂ !eivt1a2vL24h.o.h.1c.c.

1a2v2L24ws
6~ x̃,ỹ,z, t̂ !1•••,

p65av2po
6~ x̃,ỹ,z, t̂ !eivt1a2v2L22h.o.h.1c.c.

1a2v2L22ps
6~ x̃,ỹ,z, t̂ !1•••,

f 5aL22f o~ x̃,ỹ, t̂ !eivt1a2L24h.o.h.1c.c.1 f s~ x̃,ỹ, t̂ !1•••,

which are now replaced into the original nonlinear proble
~4.1!–~4.8!, to obtain
01631
c
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]po
6/]z50, i ~16m!uo

6522“̃po
6, “̃•uo

61]wo
6/]z50,

~4.13!

]ps
6/]z50,

~16n!]2us
6/]z252“̃ps

61~16m!

3@~ ūo
6
•“̃ !uo

61w̄o
6]uo

6/]z1c.c.#,

“̃•us
61]ws

6/]z50, ~4.14!

in ( x̃,ỹ)PṼ, 6 f s,6z,16d, and

us
650, wo

65ws
650 if z56~16d!, ~4.15!

wo
62uo

6
•“̃ f s5 i f o , ws

62us
6
•“̃ f s5] f s /] t̂ if z5 f s,

~4.16!

us
15us

2 , ~12n!]us
2/]z5~11n!]us

1/]z if z5 f s ,
~4.17!

po
12po

25 f s/2,

ps
12ps

25~ f o1 f̄ o!/21B̂Ĉ22f s1Ĉ22D̃ f s if z5 f s .
~4.18!

And again, the analysis of the lateral boundary layer near
lateral wall~see Appendix A! and volume conservation yield

] f s /]ñ52D̂] f s /] t̂ or f s50,

E
2(12d)

f s
us

2
•ñ dz5E

f s

(11d)

us
1
•ñ dz50,

E
2(12d)

f s
uo

2
•ñ dz1E

f s

(11d)

uo
1
•ñ dz50 on ]Ṽ,

E
Ṽ

f s dx̃dỹ50. ~4.19!

As in Sec. III A, the following overall continuity equa
tions in the lower and upper layers are useful

“̃•S E
f s

6(16d)

uo
6 dzD 5 i f o , “̃•S E

f s

6(16d)

us
6 dzD 5] f s /] t̂ ,

~4.20!

which follow upon integration of the last expressions in Eq
~4.13! and~4.14! in 6(16d),6z,6 f s and substitution of
Eq. ~4.16!. Using the first of these, the oscillatory problem
posed by Eq.~4.13!, with boundary conditions~4.15!, ~4.16!,
~4.18!, and~4.19!, is readily integrated to obtain

po
65~go6 f s!/4, uo52i ~16m!21

“̃po
6 , ~4.21!

f o5~11m!21
“̃•@~11d2 f s!“̃~g01 f s!/2#, ~4.22!

whereg0 is uniquely given by
8-9
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“̃•@~11m fs2md!“̃g01~d2 f s2m!“̃ f s#50 in Ṽ,

@~11m fs2md!“̃g01~d2 f s2m!“̃ f s#•ñ50 on ]Ṽ.

Here the expression between brackets exactly coincides
*

2(12d)
f s uo

2dz1* f s

11duo
1dz. This linear problem is readily

solved to obtain

g0~ x̃,ỹ, t̂ !5G0„f s~ x̃,ỹ, t̂ !…, with

G0~ f s!5E
0

f s
@~j1m2d!/~11mj2md!#dj. ~4.23!

In order to avoid too involved expressions, we do n
consider the most general values of the parameters in
sequel, but only two limiting cases that bear the main ing
dients of the general case. These two cases are that in w
the viscosities of the liquids are disparate@i.e., n5 1 or
21, see Eq.~4.9!# and that in which the viscosities, densitie
and unperturbed depths of both layers are approximately
same.

A. Disparate viscosities but arbitrary Atwood number and
unperturbed depths

Without loss of generality we assume that

r1n1@r2n2. ~4.24!

Thenn51 and using Eqs.~4.14!–~4.20!, the nonoscillatory
flow is readily obtained to be

ps
2522~12m!21u“̃po

2u2,

ps
1522~12m!21u“̃po

2u21 f o1B̂Ĉ22f s1Ĉ22D̃ f s ,
~4.25!

us
15@“̃ps

112~11m!21
“̃~ u“̃po

1u2!#

3@~z2 f s!
22~11d2 f s!

2#/2,

] f s /] t̂52“̃•„~11d2 f s!
3
“̃@ps

112~11m!21u“̃po
1u2#…/3,

~4.26!

where we have taken into account the vector iden
(“̃po

6
•“̃)“̃po

65“̃(u“̃po
6u2)/2. Thus f s evolves according

to the parabolic equation~4.26! where, according to Eqs
~4.21!,~4.22! and~4.25!, ps

112(11m)21u“̃po
1u2 is given by

2ps
114~11m!21u“̃po

1u2

52~12m!21u“̃~g02 f s!/2u21~11m!21u

3“̃~g01 f s!/2u21~11m!21
“̃•@~11d2 f s!

3“̃~g01 f s!#12B̂Ĉ22f s12Ĉ22D̃ f s , ~4.27!

with g0 as given by Eq.~4.23!. In addition, we have

] f s /]ñ52D̂] f s /] t̂ or f s50,
01631
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“̃@ps
112~11m!21u“̃po

1u2#•ñ50 on ]̃V,

E
Ṽ

f sdx̃dỹ50, ~4.28!

which result from Eq.~4.19! when taking into account that

E
f s

1

us
1 dz52@“̃ps

112~11m!21
“̃~ u“̃po

1u2!#

3~11d2 f s!
3/3.

As in Sec. III, we rescalet̂ and drop out the subscripts to
rewrite Eqs.~4.26!–~4.28!, after some algebra, as

] f /]t52“̃•@~11d2 f !3
“̃U#, with

U5l f 1@12H~ f !#D̃ f 2H8~ f !u“̃ f u2/2, in Ṽ,
~4.29!

] f /]ñ52b] f /]t or f 50, ]U/]ñ50 on ]Ṽ,

E
Ṽ

f dx̃dỹ50, ~4.30!

where the functionH is defined as

H~ f !512
21Ĉ2@12~d2 f !2#/@11m~ f 2d!#

21Ĉ2~12d2!/~12md!
~4.31!

and the parametersl andb and the time variablet are given
by

l5
2B̂

21Ĉ2~12d2!/~12md!

[
2BL2

21a2v2C2~12d2!/~12md!
,

b5
~21Ĉ2!D̂

6Ĉ2
[

D

3C2L3
, t5

~21Ĉ2! t̂

6Ĉ2
[

~21a2v2C2!t

6L4C2
.

~4.32!

Note thatH(0)50 and that 12H( f ).0 if

2~12d!, f ,11d, ~4.33!

that is, if the interface does not touch the lower and up
boundaries of the container. In this case, the problem~4.29!
and ~4.30! is uniformly parabolic and possesses a uniq
solution.

If r250 then the effect of the lighter liquid disappea
and we must recover the results in Sec. III. And this is tr
because ifm5d51 ~we are also requiringh15h2 because
of the nondimensionalization above! then Eqs.~4.29!–~4.31!
coincide with Eqs.~3.14! and ~3.15!. On the other hand
assumption~4.24! means that the inviscid liquid is the lighte
8-10
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one, namely that placed below. The opposite case is
tained, still under assumption~4.24!, by changing the direc-
tion of gravity and interchanging the lower and upper l
uids, which means according to Eq.~4.9!, to change the signs
of m and n. Thus both possibilities are included in Eq
~4.29! and~4.30! by just allowingm to vary between21 and
1.

The analysis in Secs. III B–III D is readily extended
Eqs.~4.29! and ~4.30!. In particular,

~1! If, in order to analyze the linear stability of the fla
steady statef 50, we linearize Eqs.~4.29! and~4.30! around
f 50 and replacef ( x̃,ỹ,t) by F( x̃,ỹ)emt in the resulting
problem, then we obtain again the linear eigenvalue prob
~3.18!-~3.19!. Thus the instability threshold is againl5l0,
which according to Eq.~4.32! yields the following threshold
value of the Bond number

BL2,B̂c5l0@11~12d2!a2v2C2/$2~12md!%#.

Thus the threshold value~4.10! is recovered.
~2! As in Sec. III C, the bifurcation from the flat state

l5l0 is transcritical for generic cross-sections, such t
Eq. ~3.23! holds. And since, according to Eq.~4.31!,

H9~0!5
2~12m2!a2v2C2

~12md!2@2~12md!1a2v2C2~12d2!#
.0,

Property C1, in Appendix C, implies that bifurcation is su
critical if the cross section is either a circle or a rectangle

~3! As in Sec. III A, a rescaled overall mechanical ener
equation is obtained upon multiplication of Eq.~4.29! by U,
integration inṼ, substitution of Eqs.~4.29! and ~4.30!, and
integration by parts, as

dE/dt52E
Ṽ

~12 f !3u“̃Uu2dx̃dỹ

2bE
]Ṽ

@12H~ f !#~] f /]t!2ds ~4.34!

or dE/dt52E
Ṽ

~12 f !3u“̃Uu2 dx̃dỹ,

depending on whether the first or the second boundary c
dition ~4.30! applies, where the rescaled energyE is given by

E5E
Ṽ

~@12H~ f !#u“̃ f u22l f 2!dx̃dỹ/2. ~4.35!

Thus the problem~4.29! and~4.30! admits a Lyapunov func-
tion and, proceeding as in Sec. III D, we conclude that
solutions that satisfy Eq.~4.33! uniformly in 0,t,` con-
verge to the set of steady states that satisfy Eq.~4.33!.

B. Zero Atwood number and equal viscosities
and unperturbed depths

Now we take

m5n5d50.
01631
b-

m

t

n-

e

Then Eq. ~4.23! yields G(j)5j2/2 and the expression
~4.21! and ~4.22! for po

6 and f o reduce to

po
65 f s

2/86 f s/4, f o5“̃•@~12 f s
2!“̃ f s/2#.

And we only need to use Eqs.~4.14!–~4.20! to obtain the
nonoscillatory flow as

us
65

~z2 f s!
2
“̃~g16G1!

4

2
~z2 f s!@22 f s“̃g11~11 f s

2!“̃G1#

4

2
~12 f s

2!~“̃g12 f s“̃G1!

4
,

ps
65~g16G1!/422u“̃po

6u2, ] f s /] t̂5“̃•Us
6 ,

~4.36!

whereG1 andUs
652*

61
f s us

6 dz are given by

G152B̂Ĉ22f s12Ĉ22D̃ f s1 f su“̃ f su21“̃•@~12 f s
2!“̃ f s#,

Us
65

~612 f s!
3
“̃~g16G1!

12

2
~612 f s!

2@22 f s“̃g11~11 f s
2!“̃G1#

8

2
~12 f s

2!~612 f s!~“̃g12 f s“̃G1!

4
. ~4.37!

In addition, according to Eq.~4.19! we have the following
boundary conditions

] f s /]ñ52D̂] f s /] t̂ or f s50, Us
6
•ñ50 on ]Ṽ,

E
Ṽ

f s dx̃dỹ50, ~4.38!

and using Eq.~4.37! the boundary conditionsŨs
6
•ñ50 are

seen to be equivalent to

]g1 /]ñ5]G1 /]ñ50 on ]Ṽ. ~4.39!

On the other hand, according to Eq.~4.36!, we have
“̃•(Us

12Us
2)50; using Eqs.~4.20!, ~4.37!, and ~4.39! we

obtain after some algebra

2D̃g15“̃•@~3 f s2 f s
3!“̃G1# in Ṽ, 2]g1 /]ñ50 on ]Ṽ.

This equation uniquely providesg1 ~up to an additive con-
stant! in terms of f s as

g152G~“̃•@~3 f s2 f s
3!“̃G1# !/2, ~4.40!
8-11
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whereG is the Green~integral! operator of2D̃ in Ṽ, with
homogeneous Neumann boundary conditions, defined by
~B4! @whereU5G(F)] in Appendix B. Substitution of Eq.
~4.40! into Eq. ~4.37! yields, after some algebra,

“̃•Us
152“̃•@~12 f s

2!3
“̃G1#/24

2@~12 f s
2!/8#“̃ f s•“̃†G$~“̃•@~3 f s2 f s

3!“̃G1#%‡

2@~12 f s
2!~3 f s2 f s

3!/8#“̃ f s•“̃G1 , ~4.41!

where we have taken into account thatD(Gl f )[ f by defini-
tion of G. And f s is given by the parabolic~integro-
differential! equation defined by the second equation in E
~4.36! and ~4.41!, with the boundary conditions~4.38! and
~4.39! and appropriate initial conditions. For convenienc
this problem is rescaled as

] f /]t52“̃•@~12 f 2!3
“̃U#/42@3~12 f 2!/4#

“̃ f •“̃@G~“̃•@~3 f 2 f 3!“̃U# !#

23~12 f 2!~3 f 2 f 3!“̃ f •“̃U/4

with

U5l f 1~12g f 2!D̃ f 2g f u“̃ f u2, ~4.42!

] f /]ñ52b] f /]t or f 50, ]U/]ñ50 on ]Ṽ,

E
Ṽ

f dx̃dỹ50, ~4.43!

where we have dropped out the subscripts from f s and the
parametersg, b, andl, and the rescaled time variablet are
defined as@see also Eqs.~4.10! and ~4.12!#

l52B̂/~21Ĉ2![2BL2/~21a2v2C2!,

g5Ĉ2/~21Ĉ2![a2v2C2/~21a2v2C2!,1,

b5~21Ĉ2!D̂/~6Ĉ2![D/~3C2L3!,

t5~21Ĉ2! t̂ /~6Ĉ2![~21a2v2C2!t/~6L4C2!.
~4.44!

The analysis in Secs. III B–D and some of the resu
there are extended to Eqs.~4.42! and ~4.43!. The following
comments are in order.

~A! If, in order to analyze the linear stability of the fla
steady statef 50, we linearize Eqs.~4.42! and~4.43! around
f 50 and replacef ( x̃,ỹ,t) by F( x̃,ỹ)emt in the resulting
problem, then we obtain again the linear eigenvalue prob
~3.18! and ~3.19!. Thus the instability threshold is againl
5l0, which according to Eq.~4.44! yields the following
threshold value of the Bond number

BL2,B̂c5l0~11a2v2C2/2!. ~4.45!

Thus we recover Eq.~4.10!.
01631
q.

.

,

s

m

~B! When analyzing the bifurcation from the flat state
l5l0 we may take] f /]t50, U5const in Eqs.~4.42! and
~4.43!, to obtain the problem~C1! and ~C2! considered in
Appendix C, with

H~ f !5g f 2. ~4.46!

Thus the bifurcation is transcritical for generic cross s
tions, such that Eq.~3.23! holds. And since, according to Eq
~4.46!,

H8~0!50 and H9~0!52g.0,

Property C1, in Appendix C, implies that bifurcation is su
critical for both circles and rectangles.

~C! As in Sec. III A, we may try to find a Lyapunov func
tion, but a similar procedure does not seem to give satis
tory results now. Thus we are unable to prove converge
to the set of the steady states.

V. CONCLUSIONS

We have considered in Secs. II and III, the combin
effects of vertical vibration and gravity in a large aspect ra
container in inverted position, namely, with gravity actin
downwards. The linear stability of the flat, rigid body osc
latory state was considered in Sec. II, where we obtained
instability thresholds for both short-wave and long-wave p
turbations. The latter analysis was based on a standard l
wave approximation~small horizontal gradients of the var
ables! that applies in the bulk, outside a boundary layer n
the lateral wall, which was analyzed in Appendix A to obta
the appropriate boundary conditions for the solution in
bulk. The resulting 2D linear eigenvalue problem was~of
fourth order and thus! somewhat nonstandard and of ind
pendent interest; it was analyzed in Appendix B. The m
ginal instability curves associated with short- and long-wa
perturbations gave a nonvoid stability region in the para
eter space~Figs. 2–4! similar to the one already found ex
perimentally in Ref.@9#. In particular, we have shown tha
the stabilizing effect of vibration is similar to that of th
surface tension, and more and more effective as the forc
frequency increases. Thus the forcing frequency has b
assumed to be appropriately large~namely, the forcing pe-
riod small as compared to the viscous time! in the remaining
part of the paper.

A weakly nonlinear, long wave approximation has be
made in Sec. III, where an evolution equation for the fr
surface in the absence of dry spots was obtained that ap
below the upper instability curve in Fig. 2~and outside a
neighborhood of this curve!; the latter condition implies tha
short-wave perturbations are damped out exponentially
can be ignored. This equation admits a Lyapunov funct
that assures convergence to the set of the steady state
addition, we analyzed local bifurcation near the instabil
threshold and showed that this is transcritical for gene
containers, and subcritical for some reflection symme
~such as circular and rectangular! cross sections. The numer
cal integration of this evolution equation, to obtain furth
properties of the associated dynamics, is outside the scop
8-12



ar
g

.
t

te
er
c
in

f

u

tic
al
ity

lle
ns
th
v

te
nc
m

de

er
in
ly
h
a

g
re
de
th
uc

-

,
on
q.

CONTROL OF RAYLEIGH-TAYLOR INSTABILITY BY . . . PHYSICAL REVIEW E 64 016318
this paper; their interest would be considerable if a comp
son with experiments were possible. But to our knowled
~and surprisingly to some extend! no further experiments, in
addition to those by Wolf@8,9# are available in the literature

The analysis in Secs. II and III was extended in Sec. IV
the case of a heavy fluid layer over an immiscible ligh
one. The instability threshold was obtained under gen
assumptions, but for simplicity the evolution equation a
counting for weakly nonlinear dynamics was made only
two limiting cases, namely,~a! when the viscosity of one o
the liquids is negligible and~b! when both viscosities and
densities are almost equal. The evolution equation was q
similar ~and exhibited similar properties! to that of a single
layer in case~a!, but it was somewhat different~e.g., it was
nonlocal! in case~b!.

For illustration we have considered in Sec. II B, a realis
example~an inverted container 5 cm wide filled with miner
oil! in which the RT instability produced by the earth grav
can be counterbalanced by a 102 Hz vertical vibration of the
container. The required vibrating frequency is much sma
if either the container is smaller or microgravity conditio
are considered. Similar applications could be made for
two fluid layers case considered in Sec. IV, but they ha
been omitted because there are no experiments in the li
ture to compare with. These would be of great interest o
the @fairly simple, as compared to the original proble
~1.1!–~1.7!# theory in this paper is available.
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APPENDIX A: THE BOUNDARY LAYERS ATTACHED TO
THE SIDE WALLS

For the sake of brevity and clarity, these boundary lay
are analyzed in detail only in the basic limit considered
Sec. II B. The analysis in the remaining limits is complete
similar as will be remarked at the end of this appendix. T
structure of this boundary layer is somewhat nonstand
because, as it can be anticipated from Eqs.~2.26! and~2.30!,
the normal component of the oscillatory velocity at the ed
of this boundary layer is non-zero at leading order. This
quires that the oscillatory velocity remains of the same or
in the boundary layer as in the bulk and, consequently,
oscillatory pressure and free surface deflection are m
larger in the boundary layer~where the oscillatory velocity is
not almost horizontal, as it is in the bulk! than in the bulk.
Thus we seek the expansions@cf. Eq. ~2.19!#

u5L21uo0eivt1L22h.o.h.1c.c.1L24us01•••,

v5L21vo0eivt1L22h.o.h.1c.c.1L23vs01•••,

w5L21wo0eivt1L22h.o.h.1c.c.1L24ws01•••,
~A1!
01631
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p5@po01L21po1#eivt1L22h.o.h.1c.c.1L21ps01L22ps1

1L23ps21•••,

f 5L21f o0eivt1L23h.o.h.1c.c.1 f s01L21f s11•••,

where

h5s/L, ~A2!

j ands are coordinates along the outward unit normal to]V
and along]V, respectively, andu andv denote the associ
ated components of the horizontal velocityu. Here f o j and
f s j are allowed to depend only onj, h and t̃ @defined by Eq.
~2.18!, as in Sec. II B#, anduo j , us j , vo j , vz j , wo j , ws j , po j
andps j are allowed to also depend onz. Substitution of these
expansions into Eqs.~2.1!–~2.5! yields

po0j5po0z5ps0j5ps0z5ps0h5ps1j5ps1z5ps1h50,
~A3!

uo0j1wo0z50, uo0jj1uo0zz2po1j2 ivuo0

5wo0jj1wo0zz2po1z2 ivwo050 ~A4!

if 2`,j,0 and 0,z,1, with boundary conditions

uo05wo050, if z51 or if j50, ~A5!

wo02 iv f o05uo0z1wo0j50 if z50, ~A6!

po12av2f s1/21C22f o0jj12wo0z50 if z50, ~A7!

po02av2f s0/25 f s0jj

52ps01av2~ f o01 f̄ o0!/21C22f s1jj

50 if z50, ~A8!

f o050, f s0j5 f s1j1D̃0f s0 t̃50or f s050, if j50,
~A9!

where

D̃05D/L3.

The problems givingvo0 and (us0 ,vs0 ,ws0) are decoupled
and need not be considered. Using Eqs.~A3!, ~A8!, and~A9!
we obtain

po05po0~h, t̃ !, ps05ps0~ t̃ !, f s05 f s0~h, t̃ !,

where

f s050,

if the second boundary condition~2.5! applies; in this case
we only need to apply matching conditions with the soluti
in the bulk to obtain the Dirichlet boundary condition in E
~2.26!.

If instead the first boundary condition~2.5! applies then
we obtain Eq.~2.27! as follows. The oscillatory velocity
componentsuo0 and wo0 are given by Eqs.~A4!–~A7! and
8-13
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the following matching conditions with the solution in th
bulk @compare Eq.~2.19! with Eq. ~A1! and use Eq.~2.30!#,

uo02 i ~av/2!@12~coshAiv!21 coshAivz# f s1j→0,

f o0→0 and wo0→0 as j→2`.

Using this and Eq.~A6! in the equation that results when th
continuity equation in Eq.~A4! is integrated in2`,j,0,
0,z,1, we obtain

E
2`

0

f o0 dj1
a

2 S 12
sinhAiv

Aiv coshAiv
D lim

j→2`

f s1j50.

~A10!

On the other hand, matching conditions with the solution
the bulk require thatf s1j be bounded asj→2`, which in-
voking Eq.~A3! and the last expression in~A8! yields

ps050.

Thus we only need to integrate the last equation in Eq.~A8!
and use Eq.~A9! to obtain

lim
j→2`

f s1j52D̃0f s0 t̃1~aC2v2/2!E
2`

0

~ f o01 f̄ o0!dj,

~A11!

and invoking Eq.~A10! we obtain

lim
j→2`

f s1j52D̃ f s0 t̃ ,

whereD̃52D̃0 /@21a2v2C2f(v)#, with the functionf as
defined in Eq.~2.28!. And we only need to apply matchin
conditions with the solution in the bulk to obtain the Ne
mann boundary condition in Eq.~2.26!.

The analysis above stands asv→` and as a weak non
linearity ~as that in Sec. III! is included; thus the boundar
conditions ~3.9! follows. And the analysis is straightfor
wardly extended when a lower liquid layer is added, as
Sec. IV, to obtain the boundary conditions~4.19!.

APPENDIX B: LINEAR STABILITY OF THE FLAT STATE

The stability of the flat statef s50 of Eqs. ~2.35! and
~2.36! is analyzed as usually, by replacingf s by F( x̃,ỹ)em̃ t̃

to obtain the linear eigenvalue problem

2D̃U5mF, D̃F1lF5U in Ṽ, ~B1!

]F/]ñ52mbF or F50, ]U/]ñ50 on ]Ṽ,

E
Ṽ

F dx̃dỹ50, ~B2!

where

l52BL2/@21a2v2f~v!C2#,
01631
n

n

m56C2L4m̃/@21a2v2f~v!C2#, b5D/~6C2L3!.

If the second equation in Eq.~B1! is substituted into the firs
one then we obtain a fourth order, linear eigenvalue probl
But instead, for convenience, we consider the linear prob
posed by the first equation in Eq.~B1! and the second bound
ary condition in Eq.~B2!, which uniquely providesU in
terms ofF, in the form

U5mG~F !1const, ~B3!

whereG is the Green operator associated with the proble

2D̃U5F in Ṽ, ]U/]ñ50 on ]Ṽ, E
Ṽ

U dx̃dỹ50,

~B4!

defined asG(F)5U. Note thatG is a self-adjoint, compac
operator inX5$FPL2(Ṽ):*ṼF dx̃dỹ50%. Also G is posi-
tive, namely,*ṼFG(F)dx̃dỹ>0. In fact,

E
Ṽ

FG~F !dx̃dỹ.k0E
Ṽ

uFu2dx̃dỹ, ~B5!

wherek0.0 is the lowest eigenvalue ofG; or, equivalently,
k0

21.0 is the lowest, strictly positive eigenvalue of2D̃ in

Ṽ, with Neumann boundary conditions at]Ṽ.
Now, replacing Eq.~B3! into the second equation in Eq

~B1! and using Eq.~B2! we rewrite Eqs.~B1! and ~B2! as

D̃F1lF5mGF1const in Ṽ,

]F/]ñ52mbF orF50 on ]Ṽ,

E
Ṽ

F dx̃dỹ50. ~B6!

Thusm can be also calculated as a generalized eigenvalu
this problem. SinceG is compact, self-adjoint and satisfie
Eq. ~B5!, the spectrum of this problem is readily seen to
real, discrete and bounded above@26#. And using standard
variational arguments@26,27#, the largest eigenvalue of thi
problem is found to be given by

2m05 min
FPY1

E
Ṽ

@ u“̃Fu22lF2#dx̃dỹ

E
Ṽ

FG~F !dx̃dỹ1bE
]Ṽ

F2 ds

with

Y15H FPH1~Ṽ !:E
Ṽ

F dx̃dỹ50J ~B7!

if the first boundary condition in Eq.~B6! holds, wheres is
an arch length parameter along]Ṽ andH1(Ṽ) is the Sobo-
lev space of those functions that, together with their fi
partial derivatives, are square integrable inṼ. And
8-14
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2m05 min
FPY2

E
Ṽ

@ u“̃Fu22lF2#dx̃dỹ

E
Ṽ

FG~F !dx̃dỹ

with

Y25H FPH1~Ṽ !:E
Ṽ

F dx̃dỹ50, F50 on ]ṼJ
~B8!

if the second boundary condition in Eq.~B6! holds. Note that
becauseb>0 and Eq.~B5! holds, the functionals that ar
minimized in Eqs.~B7! and ~B8! are bounded and continu
ous ~in fact, analytic!. Since, in addition~a! m50 is an ei-
genvalue of Eq.~B6! if and only if

D̃F1lF5const in Ṽ, ]F/]ñ50 or F50 on ]Ṽ,

E
Ṽ

F dx̃dỹ50 ~B9!

has a nontrivial solution, and~b! the lowest eigenvalue o
this problem is given by

l05 min
FPY1

E
Ṽ

u“̃Fu2 dx̃dỹ

E
Ṽ

F2 dx̃dỹ

or l05 min
FPY2

E
Ṽ

u“̃Fu2 dx̃dỹ

E
Ṽ

F2dx̃dỹ

,

~B10!

depending on whether Eq.~B7! or ~B8! applies, we obtain
the following property, which is the object of this append

Property B1. If l,l0 then all eigenvalues of Eqs. (B1
and (B2) are strictly negative, and ifl.l0 then Eqs. (B1)
and (B2) possesses a strictly positive eigenvalue.

Proof. The first assertion follows from Eqs.~B5!, ~B7!
and~B8!, and~B10!. And the second assertion follows from
the first one because, according to the characterization~B7!-
~B8!, m0 ~i! depends continuously onl and ~ii ! strictly in-
creases asl increases.

APPENDIX C: LOCAL BIFURCATION FROM THE FLAT
STATE AT THE INSTABILITY THRESHOLD

Here we consider the general problem

@12H~ f !#D̃ f 1l f 2H8~ f !u“̃ f u2/25const, in Ṽ,
~C1!

] f /]ñ50 or f 50 on ]Ṽ, E
Ṽ

f dx̃dỹ50, ~C2!

whereH is a C` function such that

H~0!50. ~C3!

For appropriateH this problem includes as particular cas
those providing the steady states of Eqs.~3.14! and ~3.15!,
~4.29! and~4.30!, and~4.42! and~4.43!. The linearization of
Eqs. ~C1! and ~C2! around the solutionf 50 leads to Eq.
01631
~B9!. Let us consider a simple eigenvalue of this linear pro
lem,l0. Local bifurcation of Eqs.~3.3! and~3.4! at l5l0 is
readily analyzed by the Lyapunov-Schmidt method@28# as
follows. Let us replace Eqs.~C1! and ~C2! by

@12H~ f !#D̃ f 1l f 2H8~ f !u“̃ f u2/25const1G~«,§!F0 ,

with f 5§~F01c! andl5l01«, in Ṽ, ~C4!

] f /]ñ50 or f 50 on ]Ṽ,

E
Ṽ

f dx̃dỹ5E
Ṽ

cF0dx̃dỹ50, ~C5!

where F0 is an eigenfunction of~B9! associated with the
eigenvaluel0, such that

E
Ṽ

F0
2dx̃dỹ51. ~C6!

This problem coincides with Eqs.~C1! and ~C2! if

G~«,§!50; ~C7!

thus this equation is calledbifurcation equation. Now, the
extension of the implicit function theorem to Banach spa
@29#, applied in an appropriate function space@e.g., the space
HB

2(Ṽ) of those functions that together with their first an

second spatial derivatives are inL2(Ṽ) and satisfy Eq.~C5!#,
implies that Eqs.~C4! and ~C5! uniquely providesc andG,
asC` functions of« and§, for all sufficiently small« and§,
and thatc50 andG50 if §50. Then those functions ca
be written, through a Taylor expansion, as

c5§~«c11§c21§2c31••• !,

G5§~«G11§G21§2G31••• !, ~C8!

and substitution of these into Eqs.~C4! and ~C5! yields

D̃c11l0c15~G121!F01const, ~C9!

D̃c21l0c25G2F01H8~0!~ u“̃F0u2/21F0D̃F0!1const,
~C10!

D̃c31l0c35G3F01H8~0!~“̃c2•“̃F01F0D̃c21c2D̃F0!

1H9~0!~F0
2D̃F01F0u“̃F0u2!/2

1const in Ṽ, ~C11!

]c1 /]ñ5]c2 /]ñ5]c3/]ñ50 or

c15c25c350 on ]Ṽ,
8-15
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E
Ṽ

c1dx̃dỹ5E
Ṽ

F0c1dx̃dỹ5E
Ṽ

c2dx̃dỹ

5E
Ṽ

c2F0 dx̃dỹ5E
Ṽ

c3dx̃dỹ

5E
Ṽ

c3F0dx̃dỹ50.

These three nonhomogeneous, singular linear problems
readily seen to be associated with self-adjoint operators,
they have a solution if and only if the right hand sides of t
three equations in Eqs.~C9!–~C11! are orthogonal toF0,
with the inner product ofL2(Ṽ). This solvability condition
yields

G151,

G252H8~0!E
Ṽ

F0~ u“̃F0u2/21F0D̃F0!dx̃dỹ

53H8~0!l0E
Ṽ

F0
3dx̃dỹ/4, ~C12!

FIG. 5. The constants appearing in Eq.~C18! when Ṽ is the
square of sides 1 andd. The attachment mode of the contact lin
~free or fixed! is indicated.
01631
re
nd

G352E
Ṽ

F0@H8~0!~“̃c2•“̃F01F0D̃c21c2D̃F0!

1H9~0!~F0
2D̃F01F0u“̃F0u2!/2#dx̃dỹ, ~C13!

where we have taken into account Eq.~B9! and the expres-
sion

l0E
Ṽ

F0
3 dx̃dỹ52E

Ṽ
F0

2D̃F0dx̃dỹ

5E
Ṽ

~“̃F0!•@“̃~F0
2!#dx̃dỹ

52E
Ṽ

F0u“̃F0u2dx̃dỹ,

which follows from Eq.~B9! upon integration by parts. Thu
G2 is generically~for domains of arbitrary shape! nonzero
and, according to Eq.~C8!, the bifurcation is generically
transcritical. But for some symmetric domains, like th
circles and rectangles considered in Sec. II, ifl0 is the low-
est eigenvalue of Eq.~B9!, thenF0 is antisymmetric andG2
vanishes. In this case,c2 is uniquely given by

c25H8~0!C, ~C14!

whereC is the unique solution of

D̃C1l0C5u“̃F0u2/21F0D̃F01const inṼ, ~C15!

]C/]ñ50 or C50 on ]Ṽ,
~C16!

E
Ṽ

C dx̃dỹ5E
Ṽ

CF0dx̃dỹ50.

And invoking Eq.~C13! we obtain

G35@H8~0!#2G311H9~0!G32/2, ~C17!

where the constantsG31 andG32 are given by

G315E
Ṽ

F0~“̃C•“̃F01F0D̃C1CD̃F0!dx̃dỹ

G325E
Ṽ

F0~F0
2D̃F01F0u“̃F0u2!dx̃dỹ/2 ~C18!

and depend only on the domainṼ and on the boundary
attachment mode of the contact line, namely, on wh
boundary condition is used in Eq.~3.7!. In particular, if Ṽ

5Ṽ1 is the circle of diameter 1, then

G31.11.42 and G32.14.78 ~C19!

for free contact line, and

G31.4.20 and G32.3.79 ~C20!

for fixed contact line, as obtained from Eq.~C13!, whereF0
is to be taken from Eqs.~2.16! and ~2.17! @and rescaled to
8-16
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satisfy Eq.~C6!# and c2 is obtained numerically from Eqs
~C14!–~C16!. Similarly, if Ṽ5Ṽ2 is the square of sides 1
andd>1 then these two constants are found to be as plo
vs d in Fig. 5.

Now, according to Eqs.~C19! and ~C20! and Fig. 5, the
constantsG31 andG32 are strictly positive in both circles an
rectangles, for both free and fixed contact lines. And us
~C17!, G3.0 in all these cases ifH9(0)>0. And, according
y

ys

s

01631
d

g

to ~C8! and the first expression in~C12!, if G3.0 then the
bifurcated solutions@given by the bifurcation equation~C7!#
exist for «[l2l0,0, which means~Property B1! that the
bifurcation is subcritical. Thus we have the following

Property C1. If H 9(0)>0 and Ṽ is either a circle or a
rectangle, then the bifurcation atl5l0 is a subcritical
pitchfork one.
,
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