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Control of Rayleigh-Taylor instability by vertical vibration in large aspect ratio containers
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We consider a horizontal heavy fluid layer supported by a light, immiscible one in a(aédeompared to
depth container, which is vertically vibrated intending to counterbalance the Rayleigh-Taylor instability of the
flat, rigid-body vibrating state. In the simplest case when the density and viscosity of the lighter fluid are small
compared to their counterparts in the heavier fluid, we apply a long wave, weakly nonlinear analysis that yields
a generalized Cahn-Hilliard equation for the evolution of the fluid interface. This equation shows that the
stabilizing effect of vibration is like that of surface tension, and is used to analyze the linear stability of the flat
state, the local bifurcation at the instability threshold and some global existence and stability properties
concerning the steady states without dry spots. The analysis is extended to two cases of practical interest.
Namely, (a) the viscosity of one of the fluids is much smaller than that of the other one(bartide densities
and viscosities of both fluids are quite close to each other.
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I. INTRODUCTION AND FORMULATION the depthth and the viscous timk?/ v as characteristic length
and time for nondimensionalization and a Cartesian coordi-
This paper deals with the Rayleigh-Tayl&T) instability  nate system attached to the container, withz&® plane on
[1,2] (see alsd3,4] and references therginwhich appears the unperturbed free surface, assumed to be horizontal. The
when a light fluid is accelerated toward a denser one. Thughondimensionalgoverning equations are
this instability plays a role in accelerated fronts, which are of

interest in, e.g., combustidis], plasma physic§6], and as- V- u+ow/9z=0, (11
trophysicq 7]. The analysis of RT instabilities in technologi-

cal applications such as inertial confinement fusiéhen- Jul ot + (u- V)u+wau/dz=—Vp+Au+d°ul iz,
counters considerable difficulties because this instability (1.2

often exhibits a transient nature and/or comes into play in

nonstatic conditions, involving convection, heat flow, mass ~JW/dt+u- Vw+wow/dz= —dpldz+ Aw+ #*w/ 9z?,
ablation, and inhomogeneities, which affect the instability (1.3
growth rate. In order to avoid these and deal with a clean ) .
formulation, amenable to analytical treatment, we considefl (X,¥) € @ andf(xy,t)<z<1, with boundary conditions
the simplest configuration exhibiting this instability, namely,
that in which a horizontal heavy fluid layer is supported by a
lighter fluid, the destabilizing acceleration being provided by

u=0, w=0 if z=1 andif (x,y) € 92, (1.9

gravity. In this configuration, the instability can be counter- w=df/gt+u-Vf,
balanced by an imposed vertical vibration of the container, 5
as already shown experimentall§,9]; see alsq9—11] for a dul 9z+Vw=O(|Vul[VT|+(|au/az|+|Vw|)|V [

first theoretical explanation. The main object of this paper is
to provide a weakly nonlinear theory of this stabilizing effect
in the limiting case when both the aspect ratio of the con-
tainer and the vibrating frequency are appropriately large. p-aw

if z=f, (1.5

2f cog wt)—BC 2f—C 2V [Vf/(1+|V[?)¥?]

Let us mention here that to our knowledge no consistently =2 w/gz+O(|Vu|+ (|u/dz| +|Vw])|Vf|) if z=f,
simplified evolution equations like the ones derived below,

accounting for both nonlinearity and viscous effects, are 1.6
found in the literature for the evolution of the RT instability )

in the presence of vibration; and similar evolution equations Vi.n=—-Dof/ot or £=0 if (x,y)ed,

in nonvibrating systems are of limited scopg.

Although we shall deal with a more general situation in
Sec. IV, in order to illustrate both the analysis and the re- jﬂf(x,y,t)dxdyzo, (1.7
sults, we first consider in Secs. Il and Il the limiting case in
which the lighter fluid can be ignored, which is justified
when its density and viscosity are small compared to their
counterpartsp andv, in the heavier fluid. Thus we consider gl
a wide cylindrical container of horizontal sizé and depth
h</, which is vertically vibrated and placed in inverted
position(see Fig. 1, with gravity acting downwards. We use FIG. 1. Sketch of the side view of the container.

—1 a*cos(2mwt”)
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tively, which are considered in Sec. Il A and Sec. IIB. The
analysis in this paper applies in the stable region of Fig. 2,
outside a neighborhood of the upper instability boundary;
thus the eigenmodes associated with the Faraday instability
are exponentially stable and can be ignored.
RT(Rayleigh-Taylor) Figure 2 is qualitatively similar to the one obtained ex-
perimentally by Wolf[9] and illustrates that stabilization is
P always feasible provided thab is sufficiently large. Of
G, course, the forcing frequency is bounded in practice to no
' higher than ultrasound frequenci@sy,< 20 kHz); a second
. limit results from the mechanical difficulties in imposing too
W N large an acceleratiofmote that the nondimensional accelera-
tion aw? grows withw along the lower bound of the stable
FIG. 2. A typical linear stability diagram of the static steady region in Fig. 2.
state(1.11). The regions where this flat state is statf and un- Thus we shall be mainly concerned below with the limit
stable(U) are indicated. w— o, But for simplicity we shall begin in Sec. Il A with the

linear stability analysis of the basic steady stdtd 1) in the
whereu and w are the horizontal and vertical velocitp,  viscous limit

= pressure-[aw’cost) +B/C?]z is a modified pressure and
f is the vertical free-surface deflection, assumed along the BL°~C~D/L*~a~w~1, (1.13
paper to be such that

*, %2

F(Faraday)

which yields the most general results because in this limit no
|V f[<]f]. (1.8 further approximation is madén addition to linearization
That analysis will also be valid for large and will help us

V, V-, andA are the horizontal gradient, divergence, and,[0 identify thedistinguished limit

Laplacian operatorg) is the transversal cross section of the
container,d() is its boundary, ana is the (horizonta) out- BL2 2 2 3

. L2 ~awC~a‘wD/L°~1, w>1, 11
ward unit normal to?Q). The domain(} is large and homo- @ @ @ (.14
thetic to a fixed two-dimension&2D) domain; the(dimen-

. o which is the limit that provides the most general results for
sionles$ characteristic size of),

large forcing frequency. This limit will be considered in Sec.

L=//h>1 (1.9 I, where the leading nonlinear terms will also be taken into

' ' account to obtain an evolution equation for the free surface

is the aspect ratioof the container and deflection. Finally, the more general case of a two-fluid layer
will be considered in Sec. IV, where for simplicity the final

B=pgh®/o and C=v+p/(ch) (1.10 form of the evolution equation accounting for weakly non-

linear dynamics will be only derived in two limiting cases,
are theBond numbernd thecapillary numberrespectively;  namely, that in which one of the fluids is inviscid compared
hereg is the gravitational acceleration amxdis the surface to the other one, and that in which the densities and viscosi-

tension coefficient. In the first boundary conditigh?7) ei-  ties of both fluids are almost equal.
ther we allow a contact line motion or not. In the former case
we assume that the static contact angle is 90° and employ the II. LINEAR STABILITY OF THE FLAT STATE

usual phenomenological laysee, e.g.[12,13) to account

for contact line dynamics; the phenomenological constant ~ Let us linearize Egs(1.1)—(1.7) around the basic state
is positive and thus the motion of the contact line is dissipa{1.11) to obtain

tive. And when the contact line is fixgdt the upper edge of

the lateral wall we assume that the height of the lateral walll V-u+ow/dgz=0, dulot=—Vp+Au+d®uliz?,
is h and the liquid volume equalstimes the area of). Note (2.1
that the rigid-body oscillating, flat state owl gt=— apl dz+ Aw+ 9°wl 972,
u=0, w=p=0, f=0 (11D if(x,y)eQ and 0<z<1, and
is a (steady solution of Eqs(1.1)—(1.7) in both cases. The u=0, w=0 if z=1 andif (x,y)edQ, (2.2

linear stability diagram of this solution is always like that

sketched in Fig. 2, where w=afldt, aulgz+Vw=0 if z=0, (2.3

arw?—K*>0 and agro—K,>0 as o—x. ) e _

(1.12 p—aw-fcofwt)-BC “f—C “Af=24w/oz if z=0,
(2.9

The upper and lower marginal instability curves correspond

to the Faraday instabilityand theRT instability respec- Vi-n=—-Ddgflot or f=0 if (Xx,y)edQ,
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Jﬂf(x,y,t)dxdy=0. (2.9 apy/ 27w Jv Faraday unstable ...,
0
As anticipated in Sec. | and illustrated in Fig. 2, marginal 10
instability occurs at two possible type of modes, which ex-
hibit short andlarge wavelengths, of the order of the depth
and the width of the container, respectively.
A. Short-wave instability: Faraday waves , Faraday stable
10°
This instability, named after Farad@y4], has been thor- 10° s 107
oughly studied(15—17. In the limits (1.13 and (1.14 the o

most unstable modes exhibit a wavelength that is at the most g 3. A plot of the rescaled Faraday instability threshold am-
of the order unity. Since the container cross section is Iargep”mde arw'?=(2mw* 1v)Y2a% in terms of C*w=2mw* p?13/ 02
end-wall effects are usually ignored, and the stability analyn the limit (2.12); the asymptotes a€%w—0 andC4w—x are
sis of Egs.(2.1)—(2.9) is made by only considering the nor- pjotted with dotted lines.

mal modes, which are of the form

vides the upper instability limit in the sketch in Fig. 2. Note

(uw,p,f)=(U,W,P,Flexdi(kix+kzy)]+c.c., that this curve satisfies the first conditi¢h12), with

(2.6

*2
whereU, W, andP depend only orz andt, andF depends K#=1.67. (212

only ont and c.c. denotes the complex conjugate. Substitu- | et us point out here that the additional requirement
tion of these expressions into Eq2.1)—(2.5) and elimina-  (B/C?)??<w in Eq. (2.1)) is seen to be automatically satis-

tion of U yield fied in the stable region sketched in Fig. 2 when the upper
o ~ ) boundary is as calculated here and the lower one is as given
P=k°P, Wi=—P,+W,,—k°W, (2.7) by Eq.(2.40 below. Thus this additional condition is unnec-
essary when seeking stability in the linabt>1.
W=W,=0, at z=-1, (2.8
W—F =W, + K2W=0. at z=0, 2.9 B. Long-wave instability: Rayleigh-Taylor

As is well known[3], in the absence of vibratiofif a

P—aw?’F coq wt)— (B—k?)F/C?=2W,, at z=0, =0) the linear probleni2.1)—(2.5) exhibits exponential in-
(2.10 stability (i.e., the RT instability whenever

where k= \k?+Kk3 is the wave number of the mode. The B=BL*>\,, (2.13
calculation of the instability threshold forcing amplitude
requires to determine those Floquet exponents of E8—
(2.10 whose real part vanishes; in fatihese exponents are
numerically found to be eithed or i 7, which correspond to
real Floquet multipliers 1 or-1, respectively. For fixed val-
ues of the remaining parameters, this determines a @ke ﬁ F dxdy=0, (2.14
whose absolute minimum yields: . The numerical calcula- Q

tion of the Floquet exponents is fairly cheap, even for eX1ith
treme values of the parameters, by using the method de-

scribed in Ref[18]. The problem still depends an, B, and R 2] 220 2752 T v/l -

C, which makes its analysis fairly tedious. For the sake of A=dT o+ otloy, x=xIL, y=ylL; (219
brevity we only give results here for sufficiently large forc- o
ing frequency, namely,

where), is the lowest eigenvalue of,

AF+\F=constin Q, 9F/gn=0 or F=0 on 4Q,

is the result of rescalin@ with L andd/dn is the result-
ing derivative along the outward unit normal. For the sim-
1+(B/C?) <, (2.11)  plest cross sections, namely, the circle of diametd? Land
the rectangle of sides=1 and 1,0,, the lowest eigenvalue
which is the more convenient one for the main object of this\ 5, and an associated eigenfunctibg are given by
paper. In this limit, gravity can be neglected and the margin-

ally unstable modes exhibit a short wavelengtht~ o~ 12 No=4v%, Fo=J1(2y,r)cog6—6p) in Q,
<1. As a consequence, Eq2.7)—(2.10 can be further res- (2.16
caled to obtain a new problem that only depends on a res- and No=7%d?, Fy=cogmx/d) in Q,

caled wave numbe® % and on the parametees/w and
C*w. Using the latter two parameters, we numerically obtainif the first boundary condition in Eq2.14) applies, where
the instability threshold curve plotted in Fig. 3, which pro- y,=2.40 is the first positive root of the derivativig of the
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first Bessel functiod, r and# are polar coordinates, ariy V.us+aws/dz=0, Vps=a2usliz?, apsliz=0,
is an arbitrary constant resulting from invariance under rota- (2.21
tion; and .
if (x,y)eQ and 0<z<1, and
No=47;, Fo=J1(2y2r)cos 6= ) in 0y, Up=Us=0, wWo=w,=0 if z=1, (2.22
(2.17
No=m>+4m%d?, Fo=sin(2mx/d)sin(my) in Q,, Wo=iwfy, We=0afs/dl, duyldz=ausldz=0 if z=0,
(2.23
if the second boundary condition in EQ.14) applies, where
v,=3.83 is the first positive root aJ;. Note that all these Po=aw’fy2,
eigenfunctions are antisymmetric on a straight line= (/2 , o - .
in O, or 6=6,=7/2 in O,). There are also symmetric ps=aw(fo+1f,)/2+BC™“fs+C “Afs if z=0,
eigenfunctions, but they are associated with larger eigenval- (2.24
ues.
Thus the instability sets in fad(L ~2) values of the Bond f fdxdy=0, (2.25
numberB. Viscosity does not affect the instability threshold Q

and the only stabilizing effect results from the surface ten- ~ - - ]

sion. In fact, the stabilizing effect of vibration in this limit is Where(), V, andA are as defined above and the overbar
to “create a surface-tension-like” mechanism as we showdenotes the complex conjugate. Equati¢220—(2.24) do
now. To this end, we consider the viscous lirfit13 and  hot apply in a boundary layer dd(1) thickness near the
use a two-time-scales method as follows. In the distinguishetteral walls. The analysis of this boundary laysee Appen-
limit (1.13 we rescale the Bond number and the horizontadix A) provides the following boundary conditions for the
space variables as in Eq.13 and (2.15, introduce the solution in the bulk:

slow time variable

~ ~ ~ 1 ~ ~
dfslon=—Dofg/at or f=0, Jus-ndz=0 on 90,
0

T=t/L* 2.1
(218 (2.26
and seek solutions of Eq&.1)—(2.5 of the form ~. ) ~
wheren is the unit outward normal té) as above,
—1 -1 2T 5 T\piot | —3 ~
u=L""uy(x,y,zt)e'“'+L °h.o.h+c.c. B =2D/[{2+ a202C2¢(w)}L7], 2.27
73 o~ o~ ~
LUy, z )+ and the function is defined as
w=L"2w,(X,y,z,t)e“'+L"*h.o.h+c.c. d(w)=1-Re((\iw) ! tanh\iw) (2.28
+L WXy, )+ - -, (2.19  with Re standing for the real part. Note that
p=po(X,y,z,t)e'“'+L"2h.0.h+c.c. $(0)>0 forallw>0, and ¢(w)—1 as w—>oo(,2 29
+L72ps(xy.z )+, Integration of Eqs(2.20—(2.24) yields
f=L2f,(X,y,1)e“ +L *h.o.h+c.ct FXy, D)+ -, Po=aw?fy2,
where c.c. denotes the complex conjugate and h.o.h. stands u0=i(aw/2)[1—(cosh\/m)‘1 cosh\/Ez]st,
for higher order harmonigsdepending on the fast time vari- (2.30
ablet ase'™!, with m#0,=1. The scalingg2.19 are ob- _ _ .
tained by an orders-of-magnitude analysis in E(s1)— Wo=i(aw/2)[1-z—(\iw coshyiw)
(2.5, anticipating that in the absence of vibration the ) _ ) _ -~
dispersion relation of the long-wave modes of E(&7)— X (sinh\iw—sinh\iwz) JAf;, (231
(2.10 associated with the RT instability ig (= growth — _
rate = (B—k?)k?/(3C2) +O(k®) ask—0. Substituting Eq. fo=(al2[1-(\iw) ! tanh\iw]Af, (232
(2.19 and EQ@s.(2.18 and(2.19 into Egs.(2.1)—(2.4) and 5 _
the last equation in Eq2.5) yields Us=(z2—1)Vpy2, we=—(2—3z+2%Ap4/6,
V Uyt dwe/9z=0, iwu,=—Vp,+d°u,/dz?, afslat=—Apg/3, (2.33
dpol3z=0, (2.20 ps=BC 2f+[C 2+a’w’p(w)/2]Afs, (2.34
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mensionalization in Sec. Ny/(BL%)=\q0/(pg/?). If the
surface tension is not much larger and the density is not
much smaller than those of the water, this parameter is small
whenever the horizontal size of the container is large com-
pared to the capillary lengthylo/(pg) ~3 mm).

Some remarks about this result are now in order:

(1) The stabilizing effect of vibration is like that of sur-
face tension, which can be completely substituted by vibra-
tion. In the absence of surface tensiGA~B—ox and the
instability threshold is given by the highest curve in Fig. 4.

0 The origin of this stabilizing effect is clear from the solution
107 ] (2.30—(2.34) of Egs. (2.20—(2.24). If a (nonconstantfree
10 2mw*h? v 10 surface deflectiorfg is present then the system cannot vi-

brate as a rigid body and an oscillating flow appears whose
associated free surface deflection is proportionalaﬁfbfs
[see Eq.(2.32] and in turn producefhrough nonlinear in-
teraction with the primary oscillating pressure field
—aw?z cost), accounted for in the second term in the left-
hand side of Eq(2.4)] a nonoscillating overpressure propor-

where the functiong is as defined in Eq(2.28. And a  tional toa’w?Afs; this is the stabilizing term.
further substitution of Eq(2.34) into the last equation in Eq. (2) The new instability thresholB,. given in Eq.(2.37) is

FIG. 4. A plot of the rescaled RT instability threshold accelera-
tion, A=[AoC/(VBL)]agrw?=[\g?n%?(/ g¥%)]ak (27 w*)?,
in terms of the nondimensional forcing frequeney=2mrw*h?/v,
for the indicated values of the parameter=X\,/(BL?)
=\o0/(pg/?), as given by Eq(2.39.

(2.33 leads to higher than that in the absence of vibration, which §s For
o _ _ fixed values of the remaining parameters, the plgtw? vs.
30fs/dt+BC 2Af+[C 2+ a2w?¢(w)/2]A%f o in Fig. 4 is as sketched in the lower curve in Fig. 2 and

satisfies Eq(1.12), with K, = 2(BLZ—X)/(A,C?).

(3) If aandw are bounded then, according to Eg.37)
s ) ) - stabilization is only possible BL? is bounded, which means
whereA“ stands for the biharmonic operator. In addition, We[see Eq(1.9)] that B must be quite small, and this requires

must use the volume conservation conditi@23 and the  hat the depth be extremely small on earth conditions. Con-
E)oug)dary conditiong2.26) that, using the first expression gition (2.37) is written in dimensional term&ee Sec.)las
2.33, are

=0 in Q, (2.3

_ _ _ 72<\o[al(pg) + (2ma* o*)2h¢(2mw* h?/v)/(29)],
ofglon=—Dafgslat or fs=0, (2.39

BC~20fs/dn+[C 2+ a%w?p(w)/2]dAfs/dn=0 (2.3p  Wherea® andw™ are the dimensional forcing amplitude and
frequency. Thus the instability limit depends on viscosity (
~ o through the argument of the functiah This is not surpris-
on 41, ﬁ fsdxdy=0. ing because the stabilization due to vibration is due to oscil-
e lations in the bulk that are viscous ib=2mw*h?/v is
Note that, as anticipated above, the effect of vibrationbounded. In particular, as increases the viscous tinté/ v
[measured by the term’w?$(w)] is equivalent to enhanc- decreases, and the forcing frequeney must also increase
ing the effective surface tension of the free surface, measurd@ maintain the stabilizing effect of vibration. The situation is
by C~2 in nondimensional terms. According to the analysismuch better asw— 9, which is easily achieved in the real-
in Appendix B, this solution is asymptotically stable, if and istic limit o— o, when[ ¢(w)—1, see Eq(2.29, and con-
only if ditions (2.37) and(2.39 become

BL2=B<B,=\([1+C%a202p(w)/2], (23D BLZ<N\[1+C%a%w?¢()/2]

where\ is the lowest eigenvalue of E¢2.14. Thus, the and
instability threshold amplitudag+ is given by 7
/P<No[ ol (pg) + (27a* w*)?h/2g]. (2.40
AoC%(BL?)]agr0?=2[1—N\o/(BL?)]/p(w
[oCH(BLY o [ o (BLOV )(2.38) This condition is independent of viscosifwhich in this
limit ®>1 only comes into play through the Faraday insta-
and yields the threshold acceleration plottedav$n Fig. 4  bility, see remark(4) below]. The reason is that now the
for several values of the parameigy/(BL?), which must be  oscillatory flow that produces the stabilizing effect is invis-
such that 8s\y/(BL?)<1, in order that the system is un- cid except in boundary layers, which only produce a higher
stable in the absence of vibratidotherwise, the RT insta- order effect. If, for illustration, we consider a circular con-
bility does not appear Note that, according to the nondi- tainer of diameter”=5 cm and deptth=5 mm (thus the
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aspect ratio”/h=10 is large and assume that the co
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ntact Which are now substituted into the original nonlinear prob-

line is fixed, then\o=472=58.7 [see Eq.(2.17] and the lem (1.1)—(1.6), to obtain

condition (2.40 is satisfied provided that

olp<418 cni/s®> and 2ma* w* >40.9 cm/s.

V.uy+dw,/9z=0, iu,=—Vp,, dp,/9z=0, (3.3

(2.41 V. ug+awg/dz=0,
(4) In addition, we must avoid the Faraday instability by _ ) g — = _
requiring thata /e is below the curve in Fig. 3; the validity — Vps+9°Us/9z°=(Uy- V) Uy +Wedu,/ 9z +c.c.,
conditions(2.11) are seen to be satisfied for both mineral oil
and water. For a sufficiently large forcing frequency, Faraday dps/9z=0, (3.4

waves are avoided, provided that/w<K*, which is writ-

ten in dimensional terms asm* (a*)2<K*?p, and this is
compatible with Eq.(2.41) only if 27w* »=600 cnf/s.

This condition is satisfied for mineral oilv(~1 cn¥/s)

if (x,y)eQ andfs<z<1, and

if us=0, wo=w,=0 if z=1, (3.5

say, w* =10? Hz anda* =0.6 mm, and for clean waten( ] - N -
=0.01 cnt/s), if o* =10* Hz anda* =6um. Of course the Wo=ifo+ Uy Vi, we=dfs/dt+us VA,
situation is much better both in microgravity conditions and

when the liquid layer is supported by another layer of
of nonzero density. The latter case will be considered
V.

liquid dugldz=0 if z=fg, (3.6

in Sec. o . o
Po= 42, ps=(fo+Tfo)2+BC 2f+C 2Af, if z=f,,

(5) The analysis above has the obvious limitations of any 3.7
linear theory. Nonlinear stability will be analyzed below.

I1l. WEAKLY NONLINEAR THEORY FOR LARGE
VIBRATING FREQUENCY

f _f.dxdy=0. (3.9
Q

Note that viscous terms have been ignofieecause they are

According to remark3) at the end of Sec. Il we assume sma|l compared to inertian the second equatiof8.3). This

that

w>1 and aw>1. (3.

A. Asymptotic derivation of an evolution equation for
the free surface

approximation fails in two thin viscous boundary layers, with
O(w~Y?) thicknesses, attached to the free surface and the
upper plate; but the effect of thep&hich could in principle
change the boundary conditiof35—(3.7)] is seen to be of
higher order and thus can be ignored in first approximation
in both the oscillatory and the nonoscillatory parts of the

D

According to EQgs.(2.29—(2.34), in order that all the solution. Inertia is much smaller in the second equati¥),
terms in Eq(2.35 be of the same order in the lin(.1), the where viscous terms cannot be neglected because they are of

following rescaled parameters and slow time variable

D=2a%w?D/[(2+a%w?C?)L3]~1, t=a?w’t/L*
(3.

the same order as the convective terms. And, as in Sec. I,
the effect of the lateral walls is appreciated only in a lateral
boundary layer, with ®(1) thickness, near the lateral walls
where Egs.(3.39—(3.7) do not apply. This boundary layer
(see Appendix A provides the following boundary condi-

7 tions for the solution in the bulk

must be of order unity. Thus we replace the expansions ;¢ ;-5_ _Qst_/st or f.=0 flu Adz=0 on 40
S S S ' S "
0

(2.19 by
u=awl "uy(x,y,z,t)e'“'+a%wL "3h.0.h+c.c.
+a%w’L BuyX,y,z,t) + - -,
w=awl 2w,(X,y,z,t)e'“'+a%wlL *h.0.h+c.c.
+alw?L " twe(X,y,z, )+ - -,
p=aw?p,(X,y,z,t)e“+a?w?L~2h.0.h+c.c.
+a2w?L " 2pyX, Y,z )+ - -,

f=al 2f,(x,y,t)e'“'+a%L *h.o.h+c.cHfyX,y,T)+--

(3.9

On the other hand, we consider the following overall con-
tinuity equations, which are obtained upon integration of the
first expressions in Eq$3.3) and(3.4) in f;<z<1 and sub-
stitution of the first two boundary conditior{8.6),

"], ).

Using these, we may integrate the remaining equations and
boundary conditions in Eq$3.3)—(3.7) to obtain

uodz)zifo, V.

usdz> =of¢/at.

. Po="Fd2, U=iV T2, fo=(1—f)AfS2—|VF %2,
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U= (22— 2fz—1+2f)[4Vp +§(|§f 12)]/8 here, would be a free boundary problem and should be com-
s S S s s ' pleted with appropriate jump conditions at the boundary of
K.
oflot=—V.[(1—f4)°V[4ps+|V {312, (3.11)
B. Linear stability of the flat state
ps=BC 2f+[C 2+ (1—f)/2]Af—|Vg%2 in O, The linear stability of the simplest steady state of Egs.
(3.12  (3.149 and(3.195, f=0, is analyzed as usually, by first lin-
earizing aroundf=0 and then replacingf(x,y,7) by

where we have taken into account thavfe-V)Vfs F(x,y)e* in the resulting problem, to obtain the linear ei-

_T1Tf |2
=V(|VTg9)/2. _ _ o genvalue problem

The evolution equation we were looking for is given by
Egs.(3.11) and(3.12. Also, invoking Egs.(3.8), (3.9), and —ZU=,uF AF+AF=U in O (3.19

(3.10, we have

o dF=—DafIat or f.~0, dFlon=—upBF or F=0, dU/dn=0 on 9,

4gpslan+a(|VEd?)/on=0 on 40, J~fsd7<d§/:0. fﬁF dxdy=0, (3.19
0
(813  whichis analyzed in Appendix B. According to Property B1

And for convenience we rescale the time variable and droE)he instability threshold 9. =X, and invoking the first ex-

. . B pression in Eq(3.16), the main result in Sec. [hamely, Eq.
out the subscrips to rewrite Eqs(3.11)—(3.13 as (2.40] is recovered.

oflar=—V-[(1-£)3VU], with _
C. Nonflat steady states without dry spots

U:)\f+(1_7f)Zf—y|Vf|2/2, in Q, (3.149 The steady states of Eq€3.14) and (3.15 that do not
exhibit dry spots are given by

aflon=—pBaflgr or =0, dU/dn=0 ond ), (1= yH K4\ f—|Ff|22=const, f<1 in{,

(3.20

ﬁf dxdy=0, (3.19
Q ~ ~ o~

dflgn=0 or f=0 ondQ), ﬁf dxdy=0. (3.20)

where[see also Eqg.1.13 and(3.2)] Q

As seen in Sec. Il B above, the flat steady stite0 is

stable ifA <\y. Since Egs(3.20 and(3.21) are a particular
case of Eqs(C1) and(C2), with

H(f)=~f, (3.22

we may apply the analysis in Appendix C to obtain the fol-
Ao n o a lowing property concerning the local bifurcation of Egs.
— 2 2\ — 2, 2n~2 2 4

' Property 3.1. For generic domains), such that the
Equation (3.14) is somewhat similar to the Cahn-Hilliard eigenfunctions of Eq. (2.14) associated witi \, are such
equation. Since € y<1, the problem(3.14 is uniformly  that
parabolic and thus has a unique solution satisfying given
initial conditions[19—21] whenever ﬁ ng;(d%ﬁol (3.23

Q

y=2B/(2+C?)=2BL?(2+a%w?C?),
y=C?(2+C?¥=a?w’C?¥(2+a’w?C?)<1,

B=(2+C?D/(6C?)=D/(3C3L3),

|f|=bounded andf<1. (3.1

the bifurcation is transcritical. And if) is either a circle or
Note that the first boundary condition is somewhat nonstandg rectangle, then the bifurcation is subcritical
ard, but it is dissipative becausgg=0 and thus standard Proof. SinceH’(0)=y>0, if Eqg. (3.23 holds, then the
results for Dirichlet and Neumann boundary conditions areconstantl’, in Eq. (C12 is nonzero and according to the
somewhat straightforwardly extended when this conditionygiscussion in Appendix C, the bifurcation is transcritical.
applies. In addition to the solutions satisfying E8.17 for  apd sinceH”(0)=0, Property C1 implies that for circles
a.” ’T>0, we C0u|d a.”OWf::I. in a time—dependent Closed and rectang'es the bifurcation is subcriticaL
subsetk (7) C £, which physically corresponds today spot The following global result gives sufficient conditions for
on the upper plate. The associated problem, not consideretbnexistence of nonflat steady states without dry spots.
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Property 3.2. Let \o>0 be the lowest positive eigenvalue of mensionalization, wherp and v denote the density and ki-
Eq. (2.14. If y<2/3 andN<Ay(1—3y/2) then Egs. (3.20) nematic viscosity and the superscripts and — are used
and (3.21) only possesses the flat solutienOf. hereinafter for the variables pertaining to the liquid above

Proof. In order to prove this property, we first note that and below the interface. The governing equations are now
the solutions of Eqs3.20 and(3.21) satisfy

V.-u*+ow*/9z=0, 4.9
as readily obtained upon multiplication of E¢®.20 by f, =-2Vp +(1=n)(Au* +5%u*/9z%), (4.2

integration in{}, integration by parts and substitution of Eq.
(3.21). And we only need to use the variational definition
(B10) of A\ to obtain the stated result. =—20p~/dz+(1=n)(AwW™ +Pw™/dz%), (4.3

(LEm)[ow=/dt+u™ - Vw=+w=gw=/dz]

D. Lyapunov function and large-time behavior if (x,y)eQ and =f(x,y,t)<*+z<1%4, with boundary

The problem(3.14) and (3.15 admits a Lyapunov func- conditions

tion that is readily obtained upon multiplication of the first Ut=0, W =0 if z=+(1=4) and if (x,y)edQ,

equation(3.14) by U, integration in{), substitution of the (4.4

second equatiofB8.14) and of Eq.(3.195, and integration by

parts, to obtain u =u", w—u -Vi=w"—u*.Vi=0gf/at if z=f,
(4.9

— _£\3|© 24vAN
defdr= fﬁ(l f)VU“dxdy (1+n)(au*19z+ VW) —(1—n)(au™/dz+Vw")

=0(|VuT||VT|+(|ou™/az|+|VW|)|VF|]?) if z=f,

— _ 2
'BJaﬁ(l vE)(9flar)“ds 4.6

pt—p —aw?f cogwt)—BC f

or dS/dr:—J~(1—f)3|VU|2d3<d§/, (3.25

o —CT2V.[Vi/(1+|Vi[2)¥?

depending on whether the first or the second boundary con- F oo o _
dition (3.15 applies, where the rescaled enetgig given by =2(1+njow™/9z=2(1=n)ow"/oz
+0O(|Vu™|+(|ou*/az|+|Vw=|)|VT]) if z=f,

&= fﬁ[(l—yf)|vf|2—xf2]d7<d~y/2. 4.7

Equation (3.25 and a well-known result on infinite- Vf.n=—-Dot/gt or £=0 if (x,y)ed,
dimensional dynamical systenm&ef. [22], p. 50, Lemma
3.8.2 (whose assumptions are checked in this case by em-
bedding theorem$23] and a priori estimates for elliptic
[24,25 and paraboli¢19] equations yields the following.
Property 3.3. If a solution of Egs. (3.14) and (3.15) sat- whereu, w, p, f, V, V-, A, Q, 9Q, andn are as defined in
isfies Eq. (3.17), uniformly for att>0, then f convergesto a Sec. I, withf andL (the dimensionless characteristic size of
the set of steady states without dry spotsras. )) satisfying again Eqg1.8) and(1.9). The positive param-
As a consequence of this property, each solution of Eqseterss, m (Atwoodnumbej andn, the effective nondimen-
(3.14 and(3.15 is such that eitheti) becomes unbounded sional vibration amplitudea, and the Bond and capillary
or develops a dry spoffor finite or infinite time or (i)  numbers are now
converges to the set of steady states without dry spots, con-

fnf(x,y,t)dxdy= 0, (4.8

sidered above in Secs. llIB and IlI C. S=(h"=h7)/(h*+h7), m=(p —p )(pT+p),
IV. TWO IMMISCIBLE LAYERS n=(p v —p v )l(p" v +p ),
We consider now a closed container of heigiit @nd a=(@ /) (p"—p)l(pT+p), (4.9
width / such thath</’, which is filled with two immiscible
liquids of different densities, with the lighter liquid below B=(p"—p )gh¥o>0,

the heavier one. We use a vibrating Cartesian coordinate

system with thez=0 plane on the unperturbed interface, and

assumed to be horizontal, and employ the viscous time

h2(p*+p ) (p* v +p »7) and the lengthh for nondi- C=(p'v'+p v )[(p"+p )oh] 2
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wherea* is the dimensional vibrating amplitudi;- are the p=19z=0, i(lxmyui=-2VpZ, V.ui+ow./9z=0
unperturbed depths of the liquid layefsuch thath™ +h~ ° ' ° o’ ° ° 4 1;’3)
=2h), p~ are the densitiegy is the gravitational accelera- '
tion, »* are the kinematic viscosities, andis the surface ops19z=0,
tension coefficient.

In the absence of vibratiofif a=0) the quiescent state is ) 20 992 T A 4
linearly unstable due to RT instability, if and only if, Eq. (1=ndugloz°=2Vps +(1=m)
(2.13 holds. With vibration, the linear stability analysis is X[(Ug - V)ug +wg dug/az+c.cl,
completely similar to that in Sec. Il and yields the asymptotic

stability condition V.us+awg/6z=0, (4.14

B R _ _ 2\qa2,.2R2 _ ~ o~ ~
B<Bc=A[1+(1-)a"w C*{2(1-md)}], 410 in(x,y)eQ, £f<*xz<1*4, and

. u; =0, wy=wg =0 if z=+(1%=9), (4.1
whereB=BL? is as defined in Eq(2.13, \ is the lowest S e e (129) “13

eigenvalue of Eq(2.14) and, as in Sec. ll, we assume that WUt Vi=if,, wi-ul-Vi= ot if z=1,

w1, (4.11) (4.16
+_ - - _ + ; _
With the same notation as in Sec. Il B, rem&8k condition Us =Us , (1—n)dug/oz=(1+n)oug/iz if z=fs,
(4.10 can be written in dimensional form as (4.17
o (27Ta* (1)*)2 pg—ngfS/Z,
/P<Ng| : o . o
(P =p)Y 9 P —ps =(fo+f,)/2+BC 2f+C2Af, if z=f,.
nh(p" 4 ) 19
(h"p*+h™p ) (p*—p) ' And again, the analysis of the lateral boundary layer near the
lateral wall(see Appendix Aand volume conservation yield
Note that as in the case of only one liquid layer and for the ~ . .
same reasofremark(3), at the end of Sec. Il Bthis condi- dfslon=—Dofslot or fs=0,
tion is independent of viscosity.
In the limit (4.12), the analysis of the weakly nonlinear st U dge f(l+5)u+-ﬁdz=0
dynamics of the system proceeds as in Sec. Ill. We again (-9 ° fo s '

assume that Eq3.1) holds, rescal€, D, and the slow time
variable as J’fs
C=awC, D=2a%w?D/[(2+a%w?C?)L?%], t=aw?t/L%

(4.12

e . _
ug-ndz+f ug -ndz=0 on 44,
fS

R . f _fsdxdy=0. (4.19
whereC andD are again assumed of order unity, and seek Q

the expansions As in Sec. Il A, the following overall continuity equa-

+ R _ tions in the lower and upper layers are useful
“=awl tu, (x,y,z,t)e“'+a’wl 3h.0.h+c.c. pperiay

2,21 =3,*(% v 71 = =(1=9) _ - =(1x5) .
+a‘wL"Cug (X,y,z,t)+ - - -, V-(Jf u, dz|=if,, V~(ff ug dz)=afslz9t,
w*=awl 2w (x,y,z,1)e“'+a’wlL "*h.o.h+c.c. (4.20
2 2 —4, T R which follow upon integration of the last expressions in Egs.
tatw LW (XY, Z, )+ -y (4.13 and(4.14) in * (1* §)<+z< + f, and substitution of
Eqg. (4.16. Using the first of these, the oscillatory problem,
p*=aw’p; (x,y,z.t)e''+a’w?L ~?h.0.h+c.c. posed by Eq(4.13, with boundary condition§4.15), (4.16),

o (4.18, and(4.19), is readily integrated to obtain
+a%0’L %ps (X,y,2,t)+ - - -,
Po=(0otf)ld, U=2i(1=m) Vp,, (4.2)
f=alL 2f,(x,y,t)e“'+a’L *h.o.h+c.c+f(X,y,t)+---, _ _
fo=(1+m) V. [(1+6-1)V(go+Ts)/2], (4.22
which are now replaced into the original nonlinear problem
(4.1)—(4.8), to obtain wheregg is uniquely given by
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V. Ia+mfs—ms)Vge+(5—fs—m)VF]=0in Q, Vipd+2(1+m)~"YVpl|?]-n=0 on 9Q,

[(1+mfs—md)Vgy+ (85— fs—m)Vi]-N=0 on 4. ﬁfsd?(d}:O, 429
Here the expression between brackets exactly coincides with @
ffj(lfg)ugdznL ffl: 5u§dz. This linear problem is readily which result from Eq(4.19 when taking into account that

solved to obtain 1
— —— ul dz=—[Vpl +2(1+m) 1V (|Vp/|?
Go(%.3.) = Go(fo(%3.1)), with ffs s G2 Vo2 m v (vee )
fe X (14 6—f4)%/3.
Go(fs)zf [(€+m=8)/(L+mé—mé)]dé. (4.23 A
0 As in Sec. lll, we rescalé and drop out the subscriptto

In order to avoid too involved expressions, we do notrewrlte Eqs.(4.26—(4.28, after some algebra, as

consider the most general values of the parameters in the
sequel, but only two limiting cases that bear the main ingre-
dients of the general case. These two cases are that in which
the viscosities of the liquids are dispardiee., n= 1 or

oflar=—V-[(1+86—1)3VU], with

U=Af+[1-H(f)]JAf—H'(f)|V]|%2, inQ,

—1, see Eq(4.9)] and that in which the viscosities, densities (4.29
and unperturbed depths of both layers are approximately the ~ ~ ~
same. dffgn=—pBof/or or £=0, dU/dn=0 ond l,
A. Disparate viscosities but arbitrary Atwood number and f _f d}ds/: 0, (4.30
unperturbed depths Q
Without loss of generality we assume that where the functiorH is defined as
pTvTEp Y. (4.24 (-1 2+C1—(5-H)A[1+m(f—5)]
Thenn=1 and using Eqsi4.14—(4.20, the nonoscillatory 2+C2(1—-8%1(1—md)
flow is readily obtained to be (4.3)
ps=—2(1-m)~YVp | and the parametessand g and the time variable are given
by

ps=—2(1-m) YVp,|?+f,+BC 2f+C ?Af,,

(4.25 28

A= ——
24+C%(1—68%)/(1—md)

ug =[Vpd +2(1+m) "V (|Vp; 9]
X[(z— fs)z—(1+ o— fs)z]/Z,

B 2BL?
2+ 22w%C2(1— 8%)/(1-mé)’

dtglot=—V-((1+ 86— 193V [p +2(1+m)~YVpi|?)/3,

429 , (2+CHD_ D (2+CHT_(2+a%’Cht
: P Tee Taor T e | el
where we have taken into account the vector identity 4.32

(Vps-V)Vp, =V (|Vps|?/2. Thusf, evolves according .
to the parabolic equatiofd.26) where, according to Eqs. Note thatH(0)=0 and that :-H(f)>0 if
(4.21),(4.22 and(4.25, p +2(1+m) 1| VpZ|? is given by (- s)<f<i+s 433
+ —1T A2
2ps +4(1+m) "V, | that is, if the interface does not touch the lower and upper
e _ boundaries of the container. In this case, the prohlér29
— (1—m-1 _ 2 1
=—(1-m) HV(go—fe/2|"+(1+m) 7| and (4.30 is uniformly parabolic and possesses a unique

s, 2 -1g solution.
XV(go+fe)/2*+(1+m) "V [(1+ 6Ty If p~=0 then the effect of the lighter liquid disappears
XV (go+fs)]+2BC 2f+2C %A f,, (4.277  and we must recover the results in Sec. Ill. And this is true
because iim=6=1 (we are also requiring* =h~ because
with gy as given by Eq(4.23. In addition, we have of the nondimensionalization aboviaen Eqs(4.29—-(4.31)
coincide with Egs.(3.14 and (3.15. On the other hand,
of/on=—Dafg/at or fs=0, assumptior(4.24 means that the inviscid liquid is the lighter
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one, namely that placed below. The opposite case is obFhen Eq. (4.23 yields G(¢)=£%/2 and the expressions
tained, still under assumptio#.24), by changing the direc- (4.21) and(4.22 for p, andf, reduce to

tion of gravity and interchanging the lower and upper lig-

uids, which means according to Eg.9), to change the signs pg = f§/8i f 4, fozv (11— fiﬁfs/z]_

of m and n. Thus both possibilities are included in Eqgs.

(4.29 and(4.30 by just allowingmto vary between-1 and  And we only need to use Eq$4.14—(4.20 to obtain the

1. nonoscillatory flow as
The analysis in Secs. IlIB-IIID is readily extended to
Egs.(4.29 and(4.30. In particular, . (z—19%V(9,+G))
(1) If, in order to analyze the linear stability of the flat Ug = ]
steady staté=0, we linearize Eq94.29 and(4.30 around
f=0 and replacef(x,y,7) by F(x,y)e*” in the resulting (z—f)[—2f Vg +(1+HVG,]
problem, then we obtain again the linear eigenvalue problem - 4
(3.18-(3.19. Thus the instability threshold is agak= \,
which according to Eq(4.32) yields the following threshold (1-2)(Vg,—1VGy)

value of the Bond number 2 )
BL2<B,=M\[1+(1— 8%)a?w?C?{2(1—ms)}]. . o . R
Ps =(9:+G)/4-2|Vpg|?, afslat=V-Ug,
Thus the threshold valu@.10 is recovered. (4.36
(2) As in Sec. Il C, the bifurcation from the flat state at .

N=X\g is transcritical for generic cross-sections, such thawhereG, and U§=—f§lu§ dz are given by
Eq. (3.23 holds. And since, according to E.31),

_9RA-2 ~—2% Tf12.F AT

21— mD)atw?C? G1=2BC *f+2C “Afg+ 1y VIg*+ V. - [(1-f5)Vf],

H"(0)= 0,
©) (1—m5)2[2(1—m5)+a2w202(1—52)]>

*

:(il_fs)sv(gli G1)

Property C1, in Appendix C, implies that bifurcation is sub- 12
critical if the cross section is either a circle or a rectangle. 1= f)A-2fVa. +(1+fOVG
(3) As in Sec. lll A, a rescaled overall mechanical energy — (= ol V01t ( VG

U

1]

equation is obtained upon multiplication of E¢4.29 by U, 8
integration inQ), substitution of Eqs(4.29 and (4.30, and (1= 12)(=1—1)(Vg —F VG,
integration by parts, as - > Z Lo (4.37)
déldr=— ﬁ(l—f)3|§u|2d7<d§/ In addition, according to Eq4.19 we have the following
@ boundary conditions
_ﬁf(,ﬁ[l_H(f)](a”aT)zds (4.34 dtgldn=—Dafslat or f,=0, UZ-n=0 on ddd,
or dg/dT:—ﬁ(l—f)3|?u|2d3<d”y, std?(d}:o, (4.39
Q Q

depending on whether the first or the second boundary co

¥nd using Eq(4.37) the boundary conditiond); -n=0 are
dition (4.30 applies, where the rescaled eneéjig given by g Eql4.37 y s

seen to be equivalent to
E= fﬁ([l—H(f)]|Vf|2—>\f2)d“>'<d"§//2. (4.39 dg,/9n=3G,/dn=0 on Q. (4.39

Thus the problent4.29 and(4.30 admits a Lyapunov func- On the other hand, according to E@4.36, we have
tion and, proceeding as in Sec. 1D, we conclude that theV - (Ug —Ug)=0; using Egs(4.20, (4.37, and (4.39 we
solutions that satisfy Eq4.33 uniformly in 0<7<c con-  obtain after some algebra
verge to the set of steady states that satisfy (BER3. B ~ 5 ~ B ~
2Ag,=V-[(3f—f3VG,] in O, 20g,/dn=0 onsQ).
B. Zero Atwood number and equal viscosities
and unperturbed depths This equation uniquely provideg; (up to an additive con-

stan} in terms off as
Now we take ) s

m=n=6=0. 9,=—-G(V-[(3f— ) VG,))/2, (4.40
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whereg is the Green(integra) operator of—A in ), with

homogeneous Neumann boundary conditions, defined by E
(B4) [whereU=G(F)] in Appendix B. Substitution of Eq.

(4.40 into Eq. (4.37) yields, after some algebra,
V. Ul=-V.[(1-1)3VG,]/24
—[(A= /811 VIG(V - [(3f— ) VGa]}]
(4.4

where we have taken into account tigtglf)=f by defini-
tion of G. And fg is given by the parabolidintegro-

—[(1—12)(3f—f3)/8] Vi VG,

PHYSICAL REVIEW E64 016318

(B) When analyzing the bifurcation from the flat state at
?,z)\o we may takedf/dr=0, U=const in Eqs(4.42 and
4.43), to obtain the problenfCl) and (C2) considered in
Appendix C, with
H(f)=yf2. (4.46

Thus the bifurcation is transcritical for generic cross sec-
tions, such that Eq3.23 holds. And since, according to Eq.
(4.49),

H’(0)=0 and H"(0)=2y>0,

differential) equation defined by the second equation in EqsP"oPerty C1, in Appendix C, implies that bifurcation is sub-

(4.36 and (4.41), with the boundary condition&4.38 and

(4.39 and appropriate initial conditions. For convenience,

this problem is rescaled as
aflor=—V-[(1—13)3VU]/4—[3(1-f?)/4]
Vi-VG(V-[(3t—3VU])]
—3(1—-f3)(3f—f3)Vf-VU/4
with
U=Mf+(1—yfA)Af—yf|VF|? (4.42

oflon=—Baflar or f=0, dU/dn=0 ondaQ,

f _fdxdy=0, (4.43
Q

where we have dropped out the subscsgftom f¢ and the

parameters, B, and\, and the rescaled time variabteare
defined agsee also Eq94.10 and(4.12)]

A=2B/(2+C?)=2BL%(2+a%w?C?),
y=C?(2+C?=a’w?C?(2+a’w?C?)<1,
B=(2+C?D/(6C?)=D/(3C2L3),

7= (2+CH)t/(6C2)=(2+a’w?C)t/(6L*C?).
(4.44)

critical for both circles and rectangles.

(C) As in Sec. lll A, we may try to find a Lyapunov func-
tion, but a similar procedure does not seem to give satisfac-
tory results now. Thus we are unable to prove convergence
to the set of the steady states.

V. CONCLUSIONS

We have considered in Secs. Il and lll, the combined
effects of vertical vibration and gravity in a large aspect ratio
container in inverted position, namely, with gravity acting
downwards. The linear stability of the flat, rigid body oscil-
latory state was considered in Sec. I, where we obtained the
instability thresholds for both short-wave and long-wave per-
turbations. The latter analysis was based on a standard long-
wave approximatiorgsmall horizontal gradients of the vari-
ableg that applies in the bulk, outside a boundary layer near
the lateral wall, which was analyzed in Appendix A to obtain
the appropriate boundary conditions for the solution in the
bulk. The resulting 2D linear eigenvalue problem wa$
fourth order and thyssomewhat nonstandard and of inde-
pendent interest; it was analyzed in Appendix B. The mar-
ginal instability curves associated with short- and long-wave
perturbations gave a nonvoid stability region in the param-
eter spacdFigs. 2—4 similar to the one already found ex-
perimentally in Ref[9]. In particular, we have shown that
the stabilizing effect of vibration is similar to that of the
surface tension, and more and more effective as the forcing
frequency increases. Thus the forcing frequency has been
assumed to be appropriately largeamely, the forcing pe-
riod small as compared to the viscous tjinmethe remaining
part of the paper.

The analysis in Secs. IlIB-D and some of the results A weakly nonlinear, long wave approximation has been

there are extended to Eq&.42 and(4.43. The following
comments are in order.

made in Sec. lll, where an evolution equation for the free
surface in the absence of dry spots was obtained that applies

(A) If, in order to analyze the linear stability of the flat below the upper instability curve in Fig. @nd outside a

steady staté =0, we linearize Eq94.42 and(4.43 around
f=0 and replacef(x,y,7) by F(X,y)e*" in the resulting

neighborhood of this curygthe latter condition implies that
short-wave perturbations are damped out exponentially and

problem, then we obtain again the linear eigenvalue problerf@n be ignored. This equation admits a Lyapunov function

(3.18 and (3.19. Thus the instability threshold is agai

=\, Which according to Eq(4.44 yields the following

threshold value of the Bond number
BL2<B.=\o(1+a%w?C?/2). (4.45

Thus we recover Eq4.10.

that assures convergence to the set of the steady states. In
addition, we analyzed local bifurcation near the instability
threshold and showed that this is transcritical for generic
containers, and subcritical for some reflection symmetric
(such as circular and rectangylaross sections. The numeri-

cal integration of this evolution equation, to obtain further
properties of the associated dynamics, is outside the scope of
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this paper; their interest would be considerable if a comparip=[p,,+ L‘lpol]e‘ '+ L "2h.0.h+c.cHL tpgp+ L %pgy
son with experiments were possible. But to our knowledge

(and surprisingly to some extendo further experiments, in +L pgpt - -,

addition to those by Wolf8,9] are available in the literature. C1e et 3 .

The analysis in Secs. Il and Il was extended in Sec. IVto  f=L “foo€“+L "h.ohtcetigtl g+,
the case of a heavy fluid layer over an immiscible lighter
one. The instability threshold was obtained under genera‘fv
assumptions, but for simplicity the evolution equation ac- n=slL, (A2)
counting for weakly nonlinear dynamics was made only in
two limiting cases, namely(@ when the viscosity of one of ¢ ands are coordinates along the outward unit normad
the liquids is negligible andb) when both viscosities and and alongd{, respectively, andi andv denote the associ-
densities are almost equal. The evolution equation was quitated components of the horizontal velocity Here f,; and
similar (and exhibited similar propertigso that of a single  f_. are allowed to depend only @iy 7 andt [defined by Eq.
layer in casga), but it was somewhat differerie.g., it was (?18) asin Sec. 1B, andu,;, Us;, Vo, Ugis Woi, Weis Poi

. . ’ . y ojr Ysjsr Yojr Yzjsr Wojs Wsjy Moj
nonloca) in case(b). _ _ ___andp; are allowed to also depend anSubstitution of these

For illustration we have considered in Sec. II B, a rea“St'Cexpansions into Eq€2.1)—(2.5) yields
example(an inverted container 5 cm wide filled with mineral
oil) in which the RT instability produced by the earth gravity  pooz= Poo,= Psos= Psoz= Ps0,= Ps1¢= Ps1z= Ps1,= 0,
can be counterbalanced by 218z vertical vibration of the (A3)
container. The required vibrating frequency is much smaller .
if either the container is smaller or microgravity conditions UooeTWo02= 0, Ugoget Ugozz— Po1e— 1 @Ugg
are considered. Similar applications could be made for the
two fluid layers case considered in Sec. IV, but they have
been omitted because there are no experiments in the liter- — oo < ¢<0 and 0<z<1, with boundary conditions
ture to compare with. These would be of great interest once
the [fairly simple, as compared to the original problem Ugog=Wu=0, if z=1 orif ¢£=0, (A5)
(1.1)—(1.7)] theory in this paper is available.

here

=Wooge T Wooz7z~ Po1z— ioWe=0 (A4)

Woo_iwf00:U002+W00§:O if z= 0, (A6)
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APPENDIX A: THE BOUNDARY LAYERS ATTACHED TO =0 if z=0 (A8)
THE SIDE WALLS

For the sake of brevity and clarity, these boundary layers  fo0=0, fs0:=fs1:+Dofsgi=00rf5x=0, if £=0,
are analyzed in detail only in the basic limit considered in (A9)
Sec. I B. The analysis in the remaining limits is completelyWhere
similar as will be remarked at the end of this appendix. The
structure of this boundary layer is somewhat nonstandard D.=D/L3
because, as it can be anticipated from Eg<26 and(2.30), 0 '
the normal component of the oscillatory velocity at the edgerhe problems giving 4o and (Ugy,v<p,Wy) are decoupled

of this boundary layer is non-zero at leading order. This rexng need not be considered. Using E@S), (A8), and(A9)
quires that the oscillatory velocity remains of the same orde{ye optain

in the boundary layer as in the bulk and, consequently, the
oscillatory pressure and free surface deflection are much Poo=Poo( 7.1), Po=Pso(1), fso=Fso(7.1),
larger in the boundary layé€where the oscillatory velocity is
not almost horizontal, as it is in the bulkhan in the bulk. where
Thus we seek the expansiofdd. Eq. (2.19] C o
s0O™ Y

u=L"tus €' “'+L7?h.0.htc.cH L ugpt -+, if the second boundary conditioi2.5) applies; in this case,
we only need to apply matching conditions with the solution
in the bulk to obtain the Dirichlet boundary condition in Eq.
(2.26.
If instead the first boundary conditiai2.5) applies then
w=L " twge' '+ L ?h.0.h+c.ctL 4wgpt---, we obtain Eq.(2.27) as follows. The oscillatory velocity
(A1)  componentsi,, andw,, are given by Eqs(A4)—(A7) and

v=L"tve' '+ L 2h.0.h+c.cHL Svgt---,
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the following matching cqnditions with the solution in the pw=6C2LY%I[2+a2w2¢(w)C?], B=DI(6CL3).
bulk [compare Eq(2.19 with Eq. (A1) and use Eq(2.30],

If the second equation in E¢B1) is substituted into the first

_i _ -1 -
Uoo—i(aw/2)[ 1 (coshyiw) ~* coshiwz]fs,—0, one then we obtain a fourth order, linear eigenvalue problem.
But instead, for convenience, we consider the linear problem
foo—0 and wep—0 as &——c. posed by the first equation in E@1) and the second bound-

ary condition in Eq.(B2), which uniquely providedJ in

Using this and Eq(A6) in the equation that results when the terms ofF, in the form

continuity equation in Eq(A4) is integrated in—o<¢<0,

0<z<1, we obtain U= uG(F)+const, (B3)
J'O f o dét a 1 sinhviw im =0, whereg is the Green operator associated with the problem
— © 2 Jiow coshyio) e o o
(WO _Fy=F in, Uld=0 on 4D, | udidy-o,
Q

On the other hand, matching conditions with the solution in (B4)
the bulk require thats,, be bounded ag— —o°, which in-

voking Eq.(A3) and the last expression {#\\8) yields defined agj(F)=U. Note thatg is a self-adjoint, compact

operator inX={F e L,(0)):f5F dxdy=0}. Also G is posi-

Pso=0. tive, namely,f5FG(F)dxdy=0. In fact,

Thus we only need to integrate the last equation in(B&)

and use Eq(A9) to obtain J: FG(F)dxdy> kofJFlzd;(d’f/, (B5)
a o
- 0 _
g”m fs1e= —Dof i+ (aC?w?/2) fﬁw(fooJffoo)df, wherek,>0 is the lowest eigenvalue & or, equivalently,

(A11) k51>0 is the lowest, strictly positive eigenvalue fA in

Q, with Neumann boundary conditions @€
and invoking Eq(A10) we obtain Now, replacing Eq(B3) into the second equation in Eq.
_ (B1) and using Eq(B2) we rewrite Eqs(B1) and (B2) as
I|m fslfz_DfSOAt‘!
o AF+\F=uGF+const in Q,

whereD=2D,/[2+a%w?C?$(w)], with the functione as
defined in Eq.(2.28. And we only need to apply matching
conditions with the solution in the bulk to obtain the Neu-
mann bounda_ry condition in E¢2.26). J~ F dxdy=0. (B6)

The analysis above stands as~e and as a weak non- Q
linearity (as that in Sec. I)lis included; thus the boundary ) )
conditions (3.9) follows. And the analysis is straightfor- Thusu can be also calculated as a generalized eigenvalue of
wardly extended when a lower liquid layer is added, as inthis problem. Sincej is compact, self-adjoint and satisfies

Sec. 1V, to obtain the boundary conditiof&19. Eq. (BS), the spectrum of this problem is readily seen to be
real, discrete and bounded abd&6]. And using standard

variational argumentg26,27), the largest eigenvalue of this
problem is found to be given by

dF/on=—uBF orF=0 on 40,

APPENDIX B: LINEAR STABILITY OF THE FLAT STATE

The stability of the flat staté;=0 of Egs.(2.395 and

(2.36 is analyzed as usually, by replacifig by F(xy)e*t fﬂ[WFlz—)\Fz]d"f(d”)‘/
to obtain the linear eigenvalue problem Q

— Mo= Min with
~AU=uF, AF+AF=U in 0, (B1) FEYlfﬁFQ(F)did%Bfﬁdes
.
dFldn=—pupBF or F=0, dU/dn=0 on i}, ~ s
Y1=[FEH1(Q):L~)F dxdy=0] (B7)
f _Fdxdy=0, (B2)
Q if the first boundary condition in EqB6) holds, wheres is
Where an arch length parameter aloag andH({Q}) is the Sobo-
lev space of those functions that, together with their first
A=2BL?%/[2+a%w?¢(w)C?], partial derivatives, are square integrable(in And
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J~[|VF|2—)\F2]d'§<d§/
QO

— o= Min with

FeY,

ﬁFg(F)d&dS/
Q

YZ:[FeHl(ﬁ):ﬁFd}d}:o, F=0 on dQ
Q
(B8)

if the second boundary condition in E@®6) holds. Note that
because3=0 and Eq.(B5) holds, the functionals that are
minimized in Eqs.(B7) and (B8) are bounded and continu-
ous (in fact, analyti¢. Since, in additiona) =0 is an ei-
genvalue of Eq(B6) if and only if

AF+\F=constin Q, dF/gn=0 or F=0 on 40,

ﬁ F dxdy=0 (B9)
Q

has a nontrivial solution, an¢b) the lowest eigenvalue of
this problem is given by

[ 19FI2 dxcfy
or A= minﬂ—,
FeY, f~ deﬁ)‘(dﬁ)'/
. (B10)

IR

Q

No= min
FeYq

ﬁpzd”xory
Q

depending on whether EqB7) or (B8) applies, we obtain
the following property, which is the object of this appendix.

Property B1. If A<\ then all eigenvalues of Egs. (B1)
and (B2) are strictly negative, and ¥>\, then Eqgs. (B1)
and (B2) possesses a strictly positive eigenvalue

Proof The first assertion follows from Eq$B5), (B7)
and(B8), and(B10). And the second assertion follows from
the first one because, according to the characterizaBa@j
(B8), uq (i) depends continuously ox and (ii) strictly in-
creases ad increases.

APPENDIX C: LOCAL BIFURCATION FROM THE FLAT
STATE AT THE INSTABILITY THRESHOLD

Here we consider the general problem

[1-H(H)]JAf+Nf—H'(f)|Vf|%2=const, in O,
(Cy

aflan=0 or f=0 on 90, ﬁfo&d}:o, (C2)
Q

whereH is aC” function such that

H(0)=0. (C3

For appropriateH this problem includes as particular cases

those providing the steady states of E(&14) and(3.15),
(4.29 and(4.30, and(4.42 and(4.43. The linearization of
Egs. (C1) and (C2) around the solutiorf=0 leads to Eq.

PHYSICAL REVIEW E 64 016318

(B9). Let us consider a simple eigenvalue of this linear prob-
lem, \,. Local bifurcation of Eqs(3.3) and(3.4) atA =\, is
readily analyzed by the Lyapunov-Schmidt metH@8] as
follows. Let us replace Eq$C1) and(C2) by

[1-H(f)JAf+Nf—H'(f)|Vf|%2=const-T'(¢,s)Fo,

with f=g(Fo+¢) andA=\y+e, inQ, (CH
aflan=0 or f=0 ondQ,
J~fd7<d§/= J YFodxdy=0, (C5)
Q Q

where F is an eigenfunction ofB9) associated with the
eigenvalue\, such that

f _F2dxdy=1. (C6)

QO

This problem coincides with Eq$C1) and (C2) if
I'(e,s)=0; (C7)

thus this equation is calledifurcation equation Now, the
extension of the implicit function theorem to Banach spaces
[29], applied in an appropriate function spdeey., the space

H3(Q)) of those functions that together with their first and

second spatial derivatives arelin({)) and satisfy Eq(C5)],
implies that Eqs(C4) and (C5) uniquely providesy andI’,
asC” functions ofe ands, for all sufficiently smalle ands,
and thatyy/=0 andI'=0 if s=0. Then those functions can
be written, through a Taylor expansion, as

Y=s(ep1tsppts’Pyt---),
[=s(el+sl,+s2Tg+--), (C8
and substitution of these into Eq€4) and (C5) yields

Z¢l+)\0¢l:(rl_l)F0+ConSt, (Cg)

Zlﬂz"‘ A0¢2:F2F0+ H I(O)(|VF0|2/2+ FozFo)'i‘ConSt,
(C10

Apat+Noiz=T3Fo+H'(0)(Vihy VF o+ Foh g+ 4, AF )
+H"(0)(F2AF o+ Fo|VFo|?)/2

+constin Q, (C11)
Ay 1N= i, IN=dihsl IN=0 or

Yr=1p=13=0 on 0,
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10*

Fixed contact line (a)

F3=—fﬁFo[H%oszVF0+FOMZ+¢ZZFO>

+H"(0)(F2AF o+ Fo| VFo|?)/2]dXdYy, (C13

where we have taken into account EB9) and the expres-
sion

xo ﬁpgo&d"y:— ﬁngFOd&ory
Q Q

e , - | (VR0 (9 (R 163y

=2f~FO|VF0|2d7<d§/,
Q

q Free contact line  (®) which follows from Eq.(B9) upon integration by parts. Thus
I', is generically(for domains of arbitrary shapeionzero
and, according to Eq(C8), the bifurcation is generically
transcritical. But for some symmetric domains, like the
circles and rectangles considered in Sec. I\{fis the low-
est eigenvalue of EqB9), thenF is antisymmetric and’,
vanishes. In this case, is uniquely given by

Yo=H"(0)W, (C14

whereW is the unique solution of

AV + W =|VF,|%2+F,AF,+const inQ), (C15

FIG. 5. The constants appearing in EG18 when () is the =~ _ =
square of sides 1 andl The attachment mode of the contact line g¥lon=0 or ¥=0 on 402,
(free or fixed is indicated. (C19

f~‘1’d7<d§/= ﬁ«lrlrod?(d?:o.
Q Q
fﬁwldXdy: fﬁFol/lldXdyz fﬁwzdxdy And invoking Eq.(C13 we obtain
VLY 0 T2=[H'(0)]?T 2+ H"(0)T 2./2, Cc1
:ﬁ YFodxdy= ﬁ Yradxdy 3=[H"(0)]T3;+H"(0)I'sy/ (C17
’ ! where the constants;, andI';, are given by

:ﬁ Y3 odxdy=0. - - - - -~
o Igy= ﬁFo(V‘I'-VFo+F0A«1r+WAFO)dxdy
Q

These three nonhomogeneous, singular linear problems are o~ S 12 i
readily seen to be associated with self-adjoint operators, and Igo= fﬁ':o(':oA':oJr Fol VFo[%)dxdy2  (C18
they have a solution if and only if the right hand sides of the

three equations in EqsC9—(C1]) are orthogonal td=s,  and depend only on the domaid and on the boundary
with the inner product of ,({2). This solvability condition attachment mode of the contact line, namely, on which

yields boundary condition is used in E¢3.7). In particular, if Q)
=0, is the circle of diameter 1, then

[5~11.42 andI3,~14.78 (C19

for free contact line, and
r,= —H'(O)f~ Fo(|VFo|2/2+ FoAF)dxdy

Q F312420 and F322379 (CZO)
—3H '(O)Roﬁ F8d§d§/4, (C12 for fixed contact line, as obtained from E13), whereF,
Q is to be taken from Eq92.16 and(2.17) [and rescaled to
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satisfy Eq.(C6)] and ¢, is obtained numerically from Eqgs. to (C8) and the first expression i(C12), if I'3>0 then the
(C14—(C16). Similarly, if =0, is the square of sides 1 bif_urcated solutionggiven _by the bifurcation equatiofC7)]
andd=1 then these two constants are found to be as plotte8XiSt fore=\—\o<0, which meansProperty B} that the
vsdin Fig. 5. bifurcation is subcritical. Thus we have the following
Now, according to Eqs(C19 and(C20 and Fig. 5, the

constantd"3; andI 5, are strictly positive in both circles and Property C1. If H”(0)=0 and {} is either a circle or a
rectangles, for both free and fixed contact lines. And usingectangle, then the bifurcation ax=\, is a subcritical
(C17), I';>0 in all these cases HI”(0)=0. And, according pitchfork one
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